cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096472 Numbers containing squares of Pythagorean triples in their divisor set.

This page as a plain text file.
%I A096472 #27 Jul 05 2025 14:16:08
%S A096472 3600,7200,10800,14400,18000,21600,25200,28800,32400,36000,39600,
%T A096472 43200,46800,50400,54000,57600,61200,64800,68400,72000,75600,79200,
%U A096472 82800,86400,90000,93600,97200,100800,104400,108000,111600,115200,118800,122400,126000,129600,133200
%N A096472 Numbers containing squares of Pythagorean triples in their divisor set.
%C A096472 a(n) = m * (A046083(k)*A046084(k)*A009000(k))^2 for appropriate, not necessarily unique m and k.
%H A096472 Paolo Xausa, <a href="/A096472/b096472.txt">Table of n, a(n) for n = 1..10000</a>
%H A096472 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A096472 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>.
%H A096472 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A096472 a(n) = n*60^2.
%F A096472 From _Elmo R. Oliveira_, Jun 30 2025: (Start)
%F A096472 G.f.: 3600*x/(1-x)^2.
%F A096472 E.g.f.: 3600*x*exp(x).
%F A096472 a(n) = 60*A169823(n) = 100*A044102(n).
%F A096472 a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
%e A096472 5^2 + 12^2 = 13^2: 5^2, 12^2 and 13^2 are divisors of 608400 = (13*5*3*2^2)^2, therefore 608400 is a term.
%t A096472 Range[50]*3600 (* _Paolo Xausa_, Jul 01 2025 *)
%o A096472 (PARI) my(x='x+O('x^38)); Vec(3600*x/(1-x)^2) \\ _Elmo R. Oliveira_, Jun 30 2025
%Y A096472 Cf. Pythagorean triples: A046083, A046084, A009000.
%Y A096472 Cf. A044102, A094519, A169823.
%K A096472 nonn,easy
%O A096472 1,1
%A A096472 _Reinhard Zumkeller_, Aug 13 2004
%E A096472 Name clarified by _Tanya Khovanova_, Jul 05 2021
%E A096472 More terms from _Elmo R. Oliveira_, Jun 30 2025