cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096473 Palindromic good primes.

This page as a plain text file.
%I A096473 #21 Aug 29 2025 10:13:49
%S A096473 5,11,101,191,727,929,30803,74047,77477,1123211,1150511,1338331,
%T A096473 1444441,1684861,1761671,3065603,3392933,3503053,3541453,9779779,
%U A096473 9845489,9926299,9927299,9932399,112959211,113030311,114535411,119676911
%N A096473 Palindromic good primes.
%C A096473 p is in the sequence iff p is in the sequences A028388 and A002385.
%C A096473 Thus, version 2 (A028388) of the definition of "good primes" is used here. - _Harvey P. Dale_, May 13 2012
%H A096473 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_273.htm">Puzzle 273. Consecutive 'good' primes</a>, The Prime Puzzles & Problems Connection.
%H A096473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoodPrime.html">Good Prime</a>.
%e A096473 11 is in the sequence because 11 is a palindromic number which is a good prime (11^2>7*13, 11^2>5*17, 11^2>3*19 & 11^2>2*23).
%t A096473 b[n_]:=(For[m=1, m<n&&Prime[n]^2>Prime[n-m]Prime[n+m], m++ ];m); v={};Do[If[IntegerDigits[Prime[n]]==Reverse[IntegerDigits[Prime [n]]]&& b[n]==n, v=Append[v, Prime[n]];Print[v]], {n, 6986301}]
%Y A096473 Cf. A028388, A002385.
%K A096473 base,nonn,changed
%O A096473 1,1
%A A096473 _Farideh Firoozbakht_, Jun 28 2004