This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096476 #23 Feb 14 2025 03:43:47 %S A096476 5,59,31,179,353,547,109,4133,6841,773,9293,3733,10559,17627,108643, %T A096476 9973,32261,3259,22811,18617,65731,60821,156371,404029,55733,40637, %U A096476 540619,192677,290897,118297,693877,406883,812527,264659,1022303,928471 %N A096476 a(n) = prime(A096475(n)). %C A096476 Both a(n) and a(n) + 2*n are primes. %C A096476 a(n) + 2*n is not necessarily the next prime after a(n). %H A096476 Amiram Eldar, <a href="/A096476/b096476.txt">Table of n, a(n) for n = 3..202</a> %F A096476 a(n) = A000040(A096475(n)). %e A096476 a(6) = 179 is a prime and 2*6 + 179 = 12 + 179 = 191 is also a prime, while pi(191) = 43, pi(179) = 41 are twin primes and 179 is the 6th term of A096475 (offset = 3). %t A096476 {ta=Table[0, {1300}], tb=Table[0, {1300}], tc=Table[0, {1300}], u=1}; Do[s=Prime[n+1]-Prime[n];If[Equal[s, 2], ta[[u]]=Prime[Prime[n+1]]-Prime[Prime[n]];tb[[u]]=n; tc[[u]]=Prime[n];td[[u]]=Prime[Prime[n]];u=u+1], {n, 1, 10000}];td %o A096476 (PARI) list(len) = {my(v = vector(len), c = 0, q = 2, p1 = 2, p2 = 3, i); forprime(p3 = 5, , q++; if(isprime(q) && isprime(q-2), i = (p3-p1)/2 - 2; if(i <= len && v[i]==0, v[i] = p1; c++; if(c == len, break))); p1 = p2; p2 = p3); v;} \\ _Amiram Eldar_, Feb 14 2025 %Y A096476 Cf. A000720, A001359, A096474, A096475. %K A096476 nonn %O A096476 3,1 %A A096476 _Labos Elemer_, Jun 23 2004