A096491 a(n) = sqrt(n) of n if n is a perfect square, otherwise a(n) = largest term in period of continued fraction expansion of square root of n.
1, 2, 2, 2, 4, 4, 4, 4, 3, 6, 6, 6, 6, 6, 6, 4, 8, 8, 8, 8, 8, 8, 8, 8, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
Offset: 1
Keywords
Examples
For n=127: the period={3,1,2,2,7,11,7,2,2,1,3,22}, max=a(127)=22.
Programs
-
Maple
A096491 := proc(n) if issqr(n) then sqrt(n) ; else numtheory[cfrac](sqrt(n),'periodic','quotients') ; %[2] ; max(op(%)) ; end if; end proc: # R. J. Mathar, Mar 18 2010
-
Mathematica
u=1;Do[s=Max[Last[ContinuedFraction[n^(1/2)]]];tc[[u]]=s;u=u+1, {n, 1, m}]
Extensions
Definition revised by N. J. A. Sloane, Mar 18 2010