A096492 Number of distinct terms in continued fraction period of square root of n.
1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 4, 2, 3, 4, 3, 2, 1, 1, 2, 3, 3, 2, 4, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 4, 3, 3, 5, 3, 2, 1, 1, 2, 4, 3, 4, 2, 2, 3, 2, 4, 3, 5, 3, 2, 1, 1, 2, 5, 2, 4, 3, 4, 2, 3, 2, 2, 5, 4, 3, 3, 2, 1, 1, 2, 2, 3, 4, 2, 3, 3, 2, 3, 4, 4, 6, 3, 3, 3, 3, 2, 1, 1, 2, 5, 2, 2
Offset: 1
Keywords
Examples
n=127: the period={3,1,2,2,7,11,7,2,2,1,3,22},distinct-terms={1,2,3,7,11,22}, so a[127]=6;
Programs
-
Mathematica
{tc=Table[0, {m}], u=1}; Do[s=Length[Union[Last[ContinuedFraction[n^(1/2)]]]]; tc[[u]]=s;u=u+1, {n, 1, m}], tc
Formula
a(n) = 1 if n is a square and a(n) = A028832(n) otherwise. - Amiram Eldar, Nov 10 2021
Comments