This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096493 #11 Mar 18 2016 15:59:55 %S A096493 0,1,1,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,2,1,1,1,1,0,0,0,1,2,1,1,2,0,1,0, %T A096493 0,0,0,0,0,1,1,1,2,1,1,2,1,0,0,0,1,1,1,1,1,1,0,0,2,1,2,0,0,0,0,0,3,0, %U A096493 1,1,2,1,1,0,0,2,2,0,1,0,0,0,0,0,0,1,1,1,2,1,1,1,0,3,1,1,1,0,0,0,0,0,1,1,0 %N A096493 Number of distinct primes in continued fraction period of square root of n. %H A096493 Harvey P. Dale, <a href="/A096493/b096493.txt">Table of n, a(n) for n = 1..1000</a> %e A096493 n=127: the period={3,1,2,2,7,11,7,2,2,1,3,22}, %e A096493 distinct-primes={2,3,7,11}, so a[127]=4; %t A096493 {te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[n^(1/2)]]]], True]; te[[u]]=s;u=u+1, {n, 1, m}];te %t A096493 dpcf[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],0,Count[Union[ ContinuedFraction[ s][[2]]],_?PrimeQ]]]; Array[dpcf,110] (* _Harvey P. Dale_, Mar 18 2016 *) %Y A096493 Cf. A003285, A013646, A096491, A096492. %K A096493 nonn %O A096493 1,19 %A A096493 _Labos Elemer_, Jun 29 2004