cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096493 Number of distinct primes in continued fraction period of square root of n.

This page as a plain text file.
%I A096493 #11 Mar 18 2016 15:59:55
%S A096493 0,1,1,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,2,1,1,1,1,0,0,0,1,2,1,1,2,0,1,0,
%T A096493 0,0,0,0,0,1,1,1,2,1,1,2,1,0,0,0,1,1,1,1,1,1,0,0,2,1,2,0,0,0,0,0,3,0,
%U A096493 1,1,2,1,1,0,0,2,2,0,1,0,0,0,0,0,0,1,1,1,2,1,1,1,0,3,1,1,1,0,0,0,0,0,1,1,0
%N A096493 Number of distinct primes in continued fraction period of square root of n.
%H A096493 Harvey P. Dale, <a href="/A096493/b096493.txt">Table of n, a(n) for n = 1..1000</a>
%e A096493 n=127: the period={3,1,2,2,7,11,7,2,2,1,3,22},
%e A096493 distinct-primes={2,3,7,11}, so a[127]=4;
%t A096493 {te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[n^(1/2)]]]], True]; te[[u]]=s;u=u+1, {n, 1, m}];te
%t A096493 dpcf[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],0,Count[Union[ ContinuedFraction[ s][[2]]],_?PrimeQ]]]; Array[dpcf,110] (* _Harvey P. Dale_, Mar 18 2016 *)
%Y A096493 Cf. A003285, A013646, A096491, A096492.
%K A096493 nonn
%O A096493 1,19
%A A096493 _Labos Elemer_, Jun 29 2004