cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096494 Largest value in the periodic part of the continued fraction of sqrt(prime(n)).

This page as a plain text file.
%I A096494 #34 Jul 12 2021 03:37:04
%S A096494 2,2,4,4,6,6,8,8,8,10,10,12,12,12,12,14,14,14,16,16,16,16,18,18,18,20,
%T A096494 20,20,20,20,22,22,22,22,24,24,24,24,24,26,26,26,26,26,28,28,28,28,30,
%U A096494 30,30,30,30,30,32,32,32,32,32,32,32,34,34,34,34,34,36,36,36,36,36,36
%N A096494 Largest value in the periodic part of the continued fraction of sqrt(prime(n)).
%H A096494 Reinhard Zumkeller, <a href="/A096494/b096494.txt">Table of n, a(n) for n = 1..10000</a>
%F A096494 It seems that lim_{n->infinity} a(n)/n = 0. - _Benoit Cloitre_, Apr 19 2003
%F A096494 a(n) = 2*A000006(n). - _Benoit Cloitre_, Apr 19 2003
%e A096494 n=31: prime(31) = 127, and the periodic part is {3,1,2,2,7,11,7,2,2,1,3,22}, so a(31)=22.
%p A096494 A096491 := proc(n)
%p A096494 if issqr(n) then
%p A096494 sqrt(n) ;
%p A096494 else
%p A096494 numtheory[cfrac](sqrt(n),'periodic','quotients') ;
%p A096494 %[2] ;
%p A096494 max(op(%)) ;
%p A096494 end if;
%p A096494 end proc:
%p A096494 A096494 := proc(n)
%p A096494 option remember ;
%p A096494 A096491(ithprime(n)) ;
%p A096494 end proc: # _R. J. Mathar_, Mar 18 2010
%t A096494 {te=Table[0, {m}], u=1}; Do[s=Max[Last[ContinuedFraction[Prime[n]^(1/2)]]]; te[[u]]=s;u=u+1, {n, 1, m}];te
%t A096494 a[n_]:=IntegerPart[Sqrt[Prime[n]]] 2 IntegerPart[Sqrt[#]]&/@Prime[Range[90]] (* _Vincenzo Librandi_, Aug 09 2015 *)
%o A096494 (Haskell)
%o A096494 a096494 = (* 2) . a000006  -- _Reinhard Zumkeller_, Sep 20 2014
%Y A096494 Cf. A000006, A003285, A005980, A054269.
%Y A096494 Cf. A096491, A096492, A096493, A096495, A096496.
%Y A096494 Cf. A117767.
%K A096494 nonn
%O A096494 1,1
%A A096494 _Labos Elemer_, Jun 29 2004