This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096496 #21 Nov 10 2021 07:07:11 %S A096496 1,1,0,0,1,0,0,2,1,1,2,0,1,2,1,1,2,2,3,2,1,1,0,2,1,0,1,1,2,1,4,2,1,4, %T A096496 2,4,3,4,1,0,4,1,3,2,0,3,4,1,0,1,1,2,2,2,0,0,1,1,3,1,1,0,4,3,3,1,5,3, %U A096496 2,2,2,1,3,2,4,2,1,2,0,3,4,5,5,3,1,0,3,4,1,4,1,3,3,2,1,1,2,2,2,4,4,0,2,3,4 %N A096496 Number of distinct primes in the periodic part of the continued fraction for sqrt(prime(n)). %H A096496 Amiram Eldar, <a href="/A096496/b096496.txt">Table of n, a(n) for n = 1..10000</a> %e A096496 n=31: prime(31) = 127, and the periodic part of the continued fraction of sqrt(127) is {3,1,2,2,7,11,7,2,2,1,3,22}, so a(31) = 4. %t A096496 {te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[f[n]^(1/2)]]]], True]; te[[u]]=s;u=u+1, {n, 1, m}];te %t A096496 Count[Union[ContinuedFraction[Sqrt[#]][[2]]],_?PrimeQ]&/@Prime[ Range[ 110]] (* _Harvey P. Dale_, Apr 27 2016 *) %Y A096496 Cf. A003285, A054269, A005980, A096491, A096492, A096493, A096494, A096495. %K A096496 nonn %O A096496 1,8 %A A096496 _Labos Elemer_, Jun 29 2004