This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096507 #33 Apr 14 2024 03:44:54 %S A096507 1,2,6,8,9,11,20,23,41,63,66,119,122,149,252,284,305,592,746,875,1204, %T A096507 1364,2240,2403,5106,5776,5813,12456,14235,39606,55544,84239,275922 %N A096507 Numbers k such that 6*R_k + 1 is a prime, where R_k = 11...1 is the repunit (A002275) of length k. %C A096507 Also numbers k such that (2*10^k + 1)/3 is prime. %C A096507 These numbers form a near-repdigit sequence (6)w7. %C A096507 All the terms from k = 2403 through 14235 correspond to primes. - Joao da Silva (zxawyh66(AT)yahoo.com), Oct 03 2005 %H A096507 Makoto Kamada, <a href="https://stdkmd.net/nrr/6/66667.htm#prime">Prime numbers of the form 66...667</a>. %H A096507 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a> %F A096507 a(n) = A056657(n) + 1. %e A096507 k = 9 gives 2000000001/3 = 666666667, which is prime. %e A096507 k = 20 gives 66666666666666666667, which is prime. %t A096507 Select[Range@ 2500, PrimeQ[FromDigits@ Table[6, {#}] + 1] &] (* or *) %t A096507 Select[Range@ 2500, PrimeQ[2 (10^# - 1)/3 + 1] &] (* _Michael De Vlieger_, Jul 04 2016 *) %Y A096507 Cf. A002275, A056657, A093170, A096503, A096504, A096505, A096506, A096508. %K A096507 nonn %O A096507 1,2 %A A096507 _Labos Elemer_, Jul 12 2004 %E A096507 More terms from Julien Peter Benney (jpbenney(AT)ftml.net), Sep 14 2004 %E A096507 39606 and 55544 from _Serge Batalov_, Jun 2009 %E A096507 84239 from _Serge Batalov_, Jul 06 2009 confirmed as next term by _Ray Chandler_, Feb 23 2012 %E A096507 a(33) from Kamada data by _Tyler Busby_, Apr 14 2024