A096520 Number of primes in the neighborhood of center=2^n and radius=Ceiling[Log[2^n]].
2, 3, 3, 3, 2, 3, 2, 2, 1, 3, 1, 3, 1, 1, 2, 3, 2, 5, 1, 4, 1, 2, 4, 2, 0, 2, 0, 2, 2, 5, 3, 3, 2, 0, 0, 3, 2, 2, 3, 2, 2, 3, 1, 4, 0, 2, 2, 1, 0, 2, 1, 2, 1, 1, 2, 2, 4, 1, 0, 1, 4, 0, 2, 2, 0, 3, 3, 2, 2, 2, 1, 1, 1, 3, 1, 3, 3, 3, 2, 1, 2, 4, 1, 3, 1, 3, 1, 1, 5, 3, 2, 1, 2, 2, 4, 2, 0, 4, 0, 1, 1, 2, 0, 2, 2
Offset: 1
Keywords
Examples
First in the suitable neighborhood of 2^25 no primes occur: a[25]=0, while around 2^127 6 primes arise: a[127]=6.
Programs
-
Mathematica
t=Table[Count[Table[PrimeQ[2^n+i], {i, -Ceiling[Log[2^n]//N], Ceiling[Log[2^n]//N]}], True], {n, 1, 256}]