This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096545 #18 Jul 17 2020 03:49:49 %S A096545 5,8,17,18,21,22,27,33,37,37,40,41,44,49,53,54,57,61,64,65,66,69,69, %T A096545 70,72,74,75,78,79,79,79,84,85,86,86,87,89,90,92,96,97,97,97,99,101, %U A096545 102,102,104,105,108,114,116,118,121,122,123,124,124,128,131,136,136,137 %N A096545 Ordered z such that, for 0<x<y<z, the primitive quadruples (x,y,z,w) satisfy x^3 + y^3 + z^3 = w^3. %C A096545 For corresponding values w see A096546. %D A096545 Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985. %H A096545 David A. Corneth, <a href="/A096545/b096545.txt">Table of n, a(n) for n = 1..13798</a> (terms corresponding to z <= 8000) %H A096545 Fred Richman, <a href="http://math.fau.edu/Richman/cubes.htm">Sums of Three Cubes</a> %e A096545 21 and 22, for instance, are terms because we have: 18^3 + 19^3 + 21^3 = 28^3 and 4^3 + 17^3 + 22^3 = 25^3. %t A096545 s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers]; %t A096545 xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&; %t A096545 Sort[xyzw[[All, 3]]] (* _Jean-François Alcover_, Mar 06 2020 *) %Y A096545 Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546). %K A096545 nonn %O A096545 1,1 %A A096545 _Lekraj Beedassy_, Jun 25 2004 %E A096545 Edited, corrected and extended by _Ray Chandler_, Jun 28 2004