This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096547 #36 Aug 12 2025 01:59:59 %S A096547 5,7,11,13,17,19,23,31,41,53,71,103,167,431,563,673,727,829,1801,2699, %T A096547 4481,6121,7283,9413,10321,12491,17807,30307,31891,71917,172517 %N A096547 Primes p such that primorial(p)/2 - 2 is prime. %C A096547 Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - _Hugo Pfoertner_, Nov 14 2019 %C A096547 a(32) > 180000. - _Tyler Busby_, Mar 29 2024 %e A096547 Prime 7 is a term because primorial(7)/2 - 2 = A034386(7)/2 - 2 = 2*3*5*7/2 - 2 = 103 is prime. %p A096547 b:= proc(n) b(n):= `if`(n=0, 1, `if`(isprime(n), n, 1)*b(n-1)) end: %p A096547 q:= p-> isprime(p) and isprime(b(p)/2-2): %p A096547 select(q, [$1..500])[]; %t A096547 k = 1; Do[k *= Prime[n]; If[PrimeQ[k - 2], Print[Prime[n]]], {n, 2, 3276}] (* _Ryan Propper_, Oct 25 2005 *) %t A096547 Prime[#]&/@Flatten[Position[FoldList[Times,Prime[Range[1000]]]/2-2,_?PrimeQ]] (* _Harvey P. Dale_, Jun 09 2023 *) %Y A096547 Cf. A070826, A096177 primes p such that primorial(p)/2+2 is prime, A096178 primes of the form primorial(p)/2+2, A014545 primorial primes, A087398. %Y A096547 Cf. A034386. %K A096547 nonn,more,hard %O A096547 1,1 %A A096547 _Hugo Pfoertner_, Jun 27 2004 %E A096547 5 more terms from _Ryan Propper_, Oct 25 2005 %E A096547 a(29)-a(31) from _Tyler Busby_, Mar 16 2024