cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096597 Triangle read by rows: T[n,m] = number of plane partitions of n whose 3-dimensional Ferrers plot just fits inside an m X m X m box, i.e., with Max[parts, rows, columns] = m.

Original entry on oeis.org

1, 0, 3, 0, 3, 3, 0, 4, 6, 3, 0, 3, 12, 6, 3, 0, 3, 21, 15, 6, 3, 0, 1, 31, 30, 15, 6, 3, 0, 1, 42, 60, 33, 15, 6, 3, 0, 0, 54, 102, 69, 33, 15, 6, 3, 0, 0, 64, 175, 132, 72, 33, 15, 6, 3, 0, 0, 73, 270, 246, 141, 72, 33, 15, 6, 3, 0, 0, 81, 417, 432, 276, 144, 72, 33, 15, 6, 3, 0, 0, 83
Offset: 1

Views

Author

Wouter Meeussen, Aug 14 2004

Keywords

Comments

Row sums equal A000219 (plane partitions).
Conjecture: the last (floor(n/2)) terms of each row read backwards are 3*A091360 (partial sums of A000219).
Björner & Stanley (2010) give in eq.(3.7) MacMahon's generating function pp(r,s,t) for the number of plane partitions with rows <= r, columns <= s, parts <= t. For r = s = t = m, it simplifies to the g.f. f(m) given in formula. A g.f. for column m of this table is then f(m) - f(m-1). - M. F. Hasler, Sep 26 2018

Examples

			The table starts:
  n : T[n,1..n]
  1 : [1]
  2 : [0, 3]
  3 : [0, 3,  3]
  4 : [0, 4,  6,   3]
  5 : [0, 3, 12,   6,  3]
  6 : [0, 3, 21,  15,  6,  3]
  7 : [0, 1, 31,  30, 15,  6,  3]
  8 : [0, 1, 42,  60, 33, 15,  6, 3]
  9 : [0, 0, 54, 102, 69, 33, 15, 6, 3]
etc.
T[5,2] = 3 counts the plane partitions {{2,1},{2}}, {{2,1},{1,1}} and {{2,2},{1}}.
		

Crossrefs

Programs

  • Mathematica
    (* see A089924 for "planepartitions[]" *) Table[Rest@CoefficientList[Plus@@(x ^ Max[Flatten[ # ], Length[ # ], Max[Length/@# ]]&/@ planepartitions[n]), x], {n, 19}]
  • PARI
    A096597_row(n,c=vector(n))={for(i=1,#n=PlanePartitions(n),c[vecmax([#n[i], #n[i][1], n[i][1][1]])]++);c} \\ See A091298 for PlanePartitions().
    {A096597(n,m,x=(O('x^n)+1)*'x,f(r)=prod(k=1,2*r-1,((1-x^(k+r))/(1-x^k))^min(k,2*r-k)))=polcoeff(f(m)-f(m-1),n)} \\ Replace "polcoeff(...,n)" by "Vec(...)" to get the whole column m up to row n (for "Vec(...,-n)", padded with leading 0's). - M. F. Hasler, Sep 26 2018

Formula

k-th column is CoefficientList[Series[qMacMahon[k]-qMacMahon[k-1], {q, 0, 3^k}], q] with qMacMahon[n_Integer]:=Product[qan[i+j+k-1]/qan[i+j+k-2], {i, n}, {j, n}, {k, n}] and qan[n_]:=(q^n-1)/(q-1). - Wouter Meeussen, Aug 28 2004
From M. F. Hasler, Sep 26 2018: (Start)
G.f. of column m: f(m)-f(m-1), where f(m) = Product_{k=1..2*m-1} ((1-X^(k+m))/(1-X^k))^min(k,2*m-k).
From the definition, we have T[n,m] = 0 if n > m^3.
Columns and reversed rows converge to 3*A091360: T[m+k,m] = T[2m,2m-k] = 3*A091360(k) for 0 <= k < m-1. (End)

Extensions

Edited by M. F. Hasler, Sep 24 2018