cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096599 Squares k^2 with property that A062892(k^2) = 1.

This page as a plain text file.
%I A096599 #19 Oct 28 2021 16:05:53
%S A096599 0,1,4,9,16,25,36,49,64,81,121,225,289,324,361,484,529,576,676,729,
%T A096599 784,841,1156,1225,1444,1521,1681,1849,2116,2209,2601,2704,3025,3136,
%U A096599 3249,3364,3481,3721,3844,3969,4225,4356,4489,4624,5041,5184,5329,5476
%N A096599 Squares k^2 with property that A062892(k^2) = 1.
%H A096599 David A. Corneth, <a href="/A096599/b096599.txt">Table of n, a(n) for n = 1..6883</a>
%o A096599 (Python)
%o A096599 from math import isqrt
%o A096599 from sympy.utilities.iterables import multiset_permutations as mp
%o A096599 def sqr(n): return isqrt(n)**2 == n
%o A096599 def ok(square):
%o A096599     s = str(square)
%o A096599     perms = (int("".join(p)) for p in mp(s, len(s)))
%o A096599     return len(set(p for p in perms if sqr(p))) == 1
%o A096599 def aupto(limit): return [k*k for k in range(isqrt(limit)+1) if ok(k*k)]
%o A096599 print(aupto(5476)) # _Michael S. Branicky_, Oct 18 2021
%Y A096599 Cf. A096598, A096600, A000290, A000037, A039986.
%K A096599 nonn,base
%O A096599 1,3
%A A096599 _Reinhard Zumkeller_, Jun 29 2004
%E A096599 Definition clarified by _N. J. A. Sloane_, Jan 16 2014