cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096608 Triangle read by rows: T(n,k)=number of Catalan knight paths in right half-plane from (0,0) to (n,k), for 0 <= k <= 2n, n >= 0. (See A096587 for the definition of a Catalan knight.)

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 2, 3, 2, 0, 0, 1, 8, 6, 1, 3, 4, 3, 0, 0, 1, 6, 12, 16, 12, 3, 4, 5, 4, 0, 0, 1, 44, 33, 18, 21, 27, 20, 6, 5, 6, 5, 0, 0, 1, 60, 76, 95, 72, 40, 34, 41, 30, 10, 6, 7, 6, 0, 0, 1, 256, 210, 154, 155, 177, 135, 75, 52, 58, 42, 15, 7, 8, 7, 0, 0, 1, 460, 520, 581, 480
Offset: 0

Views

Author

Clark Kimberling, Jun 29 2004

Keywords

Examples

			Rows:
  1;
  0, 0, 1;
  2, 1, 0, 0, 1;
  0, 2, 3, 2, 0, 0, 1;
T(3,2) counts these paths:
  (0,0)-(1,-2)-(2,0)-(3,2);
  (0,0)-(1,2)-(2,0)-(3,2);
  (0,0)-(1,2)-(2,4)-(3,2).
		

Crossrefs

Programs

  • Mathematica
    A096608[rowmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,k],{n,0,rowmax},{k,0,2n}]]; A096608[10] (* Generates 11 rows *) (* Paolo Xausa, May 09 2023 *)
  • PARI
    row(n) = { my (rr=0, r=1); for (k=1, n, [rr, r]=[r, r*(1+'X^4)+rr*('X^3+'X^5)]); Vec(r)[1+2*n..1+4*n] } \\ Rémy Sigrist, Jun 29 2022

Formula

T(0, 0) = 1, T(0, 1) = 0, T(0, 2) = 0; T(1, 0) = 0, T(1, 1) = 0, T(1, 2) = 1.
For n >= 2, T(n, 0) = 2*T(n-2, 1) + 2*T(n-1, 2); T(n, 1) = T(n-2, 0) + T(n-2, 2) + T(n-1, 3) + T(n-1, 1); for 2 <= k <= 2n, T(n, k) = T(n-2, k-1) + T(n-2, k+1) + T(n-1, k-2) + T(n-1, k+2).
T(n, 0) + 2*Sum_{k = 1..2*n} T(n, k) = A002605(k). - Rémy Sigrist, Jun 29 2022

Extensions

Offset changed to 0 by Rémy Sigrist, Jun 29 2022