cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096608 Triangle read by rows: T(n,k)=number of Catalan knight paths in right half-plane from (0,0) to (n,k), for 0 <= k <= 2n, n >= 0. (See A096587 for the definition of a Catalan knight.)

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 2, 3, 2, 0, 0, 1, 8, 6, 1, 3, 4, 3, 0, 0, 1, 6, 12, 16, 12, 3, 4, 5, 4, 0, 0, 1, 44, 33, 18, 21, 27, 20, 6, 5, 6, 5, 0, 0, 1, 60, 76, 95, 72, 40, 34, 41, 30, 10, 6, 7, 6, 0, 0, 1, 256, 210, 154, 155, 177, 135, 75, 52, 58, 42, 15, 7, 8, 7, 0, 0, 1, 460, 520, 581, 480
Offset: 0

Views

Author

Clark Kimberling, Jun 29 2004

Keywords

Examples

			Rows:
  1;
  0, 0, 1;
  2, 1, 0, 0, 1;
  0, 2, 3, 2, 0, 0, 1;
T(3,2) counts these paths:
  (0,0)-(1,-2)-(2,0)-(3,2);
  (0,0)-(1,2)-(2,0)-(3,2);
  (0,0)-(1,2)-(2,4)-(3,2).
		

Crossrefs

Programs

  • Mathematica
    A096608[rowmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,k],{n,0,rowmax},{k,0,2n}]]; A096608[10] (* Generates 11 rows *) (* Paolo Xausa, May 09 2023 *)
  • PARI
    row(n) = { my (rr=0, r=1); for (k=1, n, [rr, r]=[r, r*(1+'X^4)+rr*('X^3+'X^5)]); Vec(r)[1+2*n..1+4*n] } \\ Rémy Sigrist, Jun 29 2022

Formula

T(0, 0) = 1, T(0, 1) = 0, T(0, 2) = 0; T(1, 0) = 0, T(1, 1) = 0, T(1, 2) = 1.
For n >= 2, T(n, 0) = 2*T(n-2, 1) + 2*T(n-1, 2); T(n, 1) = T(n-2, 0) + T(n-2, 2) + T(n-1, 3) + T(n-1, 1); for 2 <= k <= 2n, T(n, k) = T(n-2, k-1) + T(n-2, k+1) + T(n-1, k-2) + T(n-1, k+2).
T(n, 0) + 2*Sum_{k = 1..2*n} T(n, k) = A002605(k). - Rémy Sigrist, Jun 29 2022

Extensions

Offset changed to 0 by Rémy Sigrist, Jun 29 2022

A096609 a(n)=number of Catalan knight paths in right half-plane from (0,0) to (n,0).

Original entry on oeis.org

1, 0, 2, 0, 8, 6, 44, 60, 256, 460, 1582, 3360, 10324, 24150, 69652, 172200, 479728, 1225308, 3350972, 8727312, 23638174, 62295420, 167923252, 445808220, 1199180360, 3198756132, 8598547622, 23009417080, 61856381708, 165897510350
Offset: 0

Views

Author

Clark Kimberling, Jun 29 2004

Keywords

Comments

Column 0 of the array in A096608.

Crossrefs

Programs

  • Mathematica
    A096609[nmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,0],{n,0,nmax}]];A096609[50] (* Paolo Xausa, May 09 2023 *)

A096610 a(n)=number of Catalan knight paths in right half-plane from (0,0) to (n,1).

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 33, 76, 210, 520, 1410, 3590, 9618, 24920, 66521, 174412, 465264, 1229184, 3280458, 8710668, 23271116, 62014876, 165888184, 443255164, 1187255082, 3178905184, 8525398102, 22864654046, 61391533270, 164872981784
Offset: 0

Views

Author

Clark Kimberling, Jun 29 2004

Keywords

Comments

Column 1 of the array in A096608.

Crossrefs

Programs

  • Mathematica
    A096610[nmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,1],{n,0,nmax}]];A096610[50] (* Paolo Xausa, May 09 2023 *)

A096611 a(n)=number of Catalan knight paths in right half-plane from (0,0) to (n,2).

Original entry on oeis.org

0, 1, 0, 3, 1, 16, 18, 95, 154, 581, 1160, 3752, 8485, 25208, 61180, 173343, 438242, 1210222, 3134472, 8538629, 22437042, 60690510, 160889234, 433701996, 1156122902, 3112018729, 8325803356, 22402792752, 60084101129, 161701735578
Offset: 0

Views

Author

Clark Kimberling, Jun 29 2004

Keywords

Comments

Column 2 of the array in A096608.

Crossrefs

Programs

  • Mathematica
    A096611[nmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,2],{n,0,nmax}]];A096611[50] (* Paolo Xausa, May 09 2023 *)

A355320 Irregular triangle T(n, k), n >= 0, -2*n <= k <= 2*n, read by rows; T(0, 0) = 1; for n > 0, T(n, k) is the sum of all terms in previous rows at one knight's move away.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 2, 3, 2, 0, 2, 3, 2, 0, 0, 1, 1, 0, 0, 3, 4, 3, 1, 6, 8, 6, 1, 3, 4, 3, 0, 0, 1, 1, 0, 0, 4, 5, 4, 3, 12, 16, 12, 6, 12, 16, 12, 3, 4, 5, 4, 0, 0, 1, 1, 0, 0, 5, 6, 5, 6, 20, 27, 21, 18, 33, 44, 33, 18, 21, 27, 20, 6, 5, 6, 5, 0, 0, 1
Offset: 0

Views

Author

Rémy Sigrist, Jun 28 2022

Keywords

Comments

See A096608 for the right half of the triangle.
Odd terms form fractal patterns (see illustrations in Links section).

Examples

			Triangle T(n, k) begins:
                                 1
                           1  0  0  0  1
                     1  0  0  1  2  1  0  0  1
               1  0  0  2  3  2  0  2  3  2  0  0  1
         1  0  0  3  4  3  1  6  8  6  1  3  4  3  0  0  1
   1  0  0  4  5  4  3 12 16 12  6 12 16 12  3  4  5  4  0  0  1
		

Crossrefs

Programs

  • Mathematica
    A355320[rowmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,Abs[k]],{n,0,rowmax},{k,-2n,2n}]]; A355320[10] (* Generates 11 rows *) (* Paolo Xausa, May 09 2023 *)
  • PARI
    row(n) = { my (rr=0, r=1); for (k=1, n, [rr,r]=[r,r*(1+'X^4)+rr*('X^3+'X^5)]); Vec(r) }

Formula

T(n, k) = A096608(n, abs(k)).
T(n, 0) = A096609(n).
T(n, 1) = A096610(n).
T(n, 2) = A096611(n).
T(n, n) = A096612(n).
T(n, 2*n) = 1.
T(n, 2*n-1) = T(n, 2*n-2) = 0 for any n > 0.
T(n, k) = T'(n-1, k-2) + T'(n-1, k+2) + T'(n-2, k-1) + T'(n-2, k+1) for n > 0 (where T' extends T with 0's outside its domain of definition).
T(n, -k) = T(n, k).
Sum_{k = -2*n..2*n} T(n, k) = A002605(n+1).
Showing 1-5 of 5 results.