This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096615 #19 Feb 16 2025 08:32:53 %S A096615 5,1,4,0,4,1,8,9,5,8,9,0,0,7,0,7,6,1,3,9,7,6,2,9,7,3,9,5,7,6,8,8,2,8, %T A096615 7,1,6,3,0,9,2,1,8,4,4,1,2,7,1,2,4,5,1,1,7,9,2,3,6,1,9,4,6,6,7,8,1,2, %U A096615 7,3,3,4,5,0,1,0,0,0,2,7,3,0,7,3,0,0,9,0,3,1,4,4,3,6,7,4,5,9,5,4,0,7 %N A096615 Decimal expansion of 5 Pi^2/96. %D A096615 Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See pp. 17-20. %H A096615 Zafar Ahmed, <a href="http://www.jstor.org/stable/2695720">Problem 10884</a>, The American Mathematical Monthly, Vol. 108, No. 6 (2001), p. 566, <a href="http://www.jstor.org/stable/3072448">Definitely an Integral, solution to Problem 10884</a>, solved by Knut Dale, George L. Lamb, the proposer and others, ibid., Vol. 109, No. 7 (2002), pp. 670-671. %H A096615 Zafar Ahmed, <a href="https://arxiv.org/abs/1411.5169">Ahmed's integral: the maiden solution</a>, arXiv:1411.5169 [math.HO], 2014. %H A096615 Michael Penn, <a href="https://www.youtube.com/watch?v=Yv1HVY4wng8">Ahmed's Integral</a>, YouTube video, 2021. %H A096615 Juan Pla, <a href="https://arxiv.org/abs/1505.03314">A tale of Two Integrals: The Probability and Ahmed's Integrals</a>, arXiv:1505.03314 [math.CA], 2015. %H A096615 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AhmedsIntegral.html">Ahmed's Integral</a> %H A096615 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A096615 From _Amiram Eldar_, Aug 17 2020: (Start) %F A096615 Equals Integral_{x=0..1} arctan(sqrt(x^2 + 2))/(sqrt(x^2 + 2) * (x^2 + 1)) dx (Ahmed, 2001; Borwein et al., 2004). %F A096615 Equals (1/10) * Integral_{x=1..oo} log(x)/(x^5 + x) dx. (End) %e A096615 0.514041895... %t A096615 RealDigits[5 Pi^2/96, 10 , 100][[1]] (* _Amiram Eldar_, Aug 17 2020 *) %Y A096615 Cf. A019673, A098459, A102521, A244854. %K A096615 nonn,cons,easy %O A096615 0,1 %A A096615 _Eric W. Weisstein_, Jun 30 2004