This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096616 #29 Feb 16 2025 08:32:53 %S A096616 0,8,4,0,6,9,5,0,8,7,2,7,6,5,5,9,9,6,4,6,1,4,8,9,5,0,2,4,7,9,0,3,5,5, %T A096616 1,1,9,3,7,5,7,2,7,9,6,4,6,8,0,1,1,9,6,1,8,4,2,9,7,2,7,2,4,6,0,0,1,3, %U A096616 5,9,7,9,0,7,0,1,6,7,7,2,0,6,2,4,8,7,4,7,5,9,8,3,1,8,9,0,6,3,6,0,9,8 %N A096616 Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi). %D A096616 David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227. %D A096616 Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17. %H A096616 G. C. Greubel, <a href="/A096616/b096616.txt">Table of n, a(n) for n = 0..10000</a> %H A096616 Jonathan M. Borwein and Scott B. Lindstrom, <a href="http://www.ybook.co.jp/online2/oppafa/vol1/p361.html">Meetings with Lambert W and other special functions in optimization and analysis</a>, Pure and Applied Functional Analysis, Vol. 1, No. 3 (2016), pp. 361-396, <a href="https://www.carmamaths.org/resources/jon/WinOpt.pdf">alternative link</a>. %H A096616 Donald E. Knuth, <a href="http://www.jstor.org/stable/2695746">Problem 10832</a>, The American Mathematical Monthly, Vol. 107, No. 9 (2000), p. 863, <a href="http://www.jstor.org/stable/2695574">A Stirling Series</a>, solution by Cecil C. Rousseau, ibid., Vol. 108, No. 9 (2001), pp. 877-878. %H A096616 Allen Stenger, <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.124.2.116">Experimental Math for Math Monthly Problems</a>, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131, <a href="https://www.allenstenger.com/uploads/1/4/1/8/14182140/expmathmathmonthlyfeb2017.pdf">alternative link</a>. %H A096616 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KnuthsSeries.html">Knuth's Series</a>. %F A096616 Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - _Amiram Eldar_, Oct 13 2020 %F A096616 Equals 2/3 - A134469. - _R. J. Mathar_, Dec 17 2024 %e A096616 0.0840695087... %t A096616 Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* _Vaclav Kotesovec_, Aug 16 2015 *) %o A096616 (PARI) 2/3 + zeta(1/2)/sqrt(2*Pi) \\ _Michel Marcus_, Aug 15 2015 %Y A096616 Cf. A019727, A059750, A231863. %K A096616 nonn,cons %O A096616 0,2 %A A096616 _Eric W. Weisstein_, Jun 30 2004