cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096635 Let p = n-th prime == 7 mod 8 (A007522); a(n) = smallest prime q such that p is not a square mod q.

This page as a plain text file.
%I A096635 #7 Mar 13 2020 12:54:00
%S A096635 5,3,7,3,3,11,5,5,11,3,3,7,5,3,3,7,3,3,5,3,3,7,5,3,5,3,3,5,13,3,3,5,3,
%T A096635 17,5,3,3,3,3,11,5,3,17,3,7,5,5,3,3,3,7,7,5,3,5,3,7,5,3,5,11,3,3,5,3,
%U A096635 5,3,3,5,11,5,3,13,3,3,7,7,11,3,3,3,3,5,3,7,5,19,3,5,3,3,3,5,3,7,3,5,3,13
%N A096635 Let p = n-th prime == 7 mod 8 (A007522); a(n) = smallest prime q such that p is not a square mod q.
%H A096635 Robert Israel, <a href="/A096635/b096635.txt">Table of n, a(n) for n = 1..10000</a>
%p A096635 P:= select(isprime, [seq(i,i=7..3000,8)]):
%p A096635 f:= proc(n) local p,q;
%p A096635   p:= P[n]; q:= 2;
%p A096635   while numtheory:-quadres(p,q)=1 do q:= nextprime(q) od;
%p A096635   q
%p A096635 end proc:
%p A096635 map(f, [$1..nops(P)]); # _Robert Israel_, Mar 13 2020
%t A096635 f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 7 &]
%K A096635 nonn
%O A096635 1,1
%A A096635 _Robert G. Wilson v_, Jun 24 2004