A096637 Smallest prime p == 1 mod 8 (A007519) and p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).
17, 73, 241, 1009, 2689, 8089, 33049, 53881, 87481, 483289, 515761, 1083289, 7921489, 3818929, 9257329, 22000801, 68204761, 48473881, 175244281, 1149374521, 427733329, 898716289
Offset: 0
Keywords
Programs
-
Mathematica
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; If[Mod[p, 8] == 1, a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]]], {n, 10^9}]; t
Extensions
Better name from Jonathan Sondow, Mar 07 2013
Comments