cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096641 Decimal expansion of number with continued fraction expansion 0, 2, 4, 8, 16, ... (0 and positive powers of 2).

This page as a plain text file.
%I A096641 #24 Jan 14 2025 21:16:28
%S A096641 4,4,5,9,3,4,6,4,0,5,1,2,2,0,2,6,6,8,1,1,9,5,5,4,3,4,0,6,8,2,6,1,7,6,
%T A096641 8,4,2,7,0,4,0,8,8,4,5,2,0,3,4,3,8,5,0,7,9,0,3,2,6,3,5,6,0,5,0,0,6,6,
%U A096641 1,9,0,0,6,9,1,6,2,3,2,7,7,8,9,9,7,7,7,1,6,1,8,9,0,3,9,9,2,1,4,6,2,0,4,2,4
%N A096641 Decimal expansion of number with continued fraction expansion 0, 2, 4, 8, 16, ... (0 and positive powers of 2).
%C A096641 According to the Mc Laughlin-Wyshinski paper, Tasoev proposed continued fractions of the form [a0;a,...,a,a^2,...,a^2,a^3,...,a^3,...], where a0 >= 0, a >= 2 and m >= 1 are integers and each power of a occurs m times. This sequence is for the minimal values a0 = 0, a = 2 and m = 1. Komatsu "derived a closed form for the general case (m >= 1, arbitrary)" and the expression given in (1.2) (where a0=0 and m=1) of the linked paper and which is used in the second PARI/GP program below.
%H A096641 James Mc Laughlin and Nancy J. Wyshinski, <a href="https://doi.org/10.1017/S0305004105008479">Ramanujan and the regular continued fraction expansion of real numbers</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 138. No. 3 (2005), pp. 367-381; <a href="https://arxiv.org/abs/math/0402461">arXiv preprint</a> arXiv:math/0402461 [math.NT], 2004; <a href="https://www.wcupa.edu/sciences-mathematics/mathematics/jMcLaughlin/documents/ramregcfsrealnos.pdf">alternative link</a>. See page 2.
%F A096641 From _Amiram Eldar_, Feb 08 2022: (Start)
%F A096641 Equals A214070 - 1.
%F A096641 Equals 1/A275614 - 1. (End)
%e A096641 0.445934640512202668119554340682617684270408845203438507903263560500661900...
%t A096641 RealDigits[FromContinuedFraction[{0, 2^Range@ 19}], 10, 111][[1]] (* _Robert G. Wilson v_, Jan 04 2013 *)
%o A096641 (PARI)
%o A096641 \p 400
%o A096641 dec_exp(v)= w=contfracpnqn(v); w[1,1]/w[2,1]+0.
%o A096641 dec_exp(vector(400,i,if(i==1,0,2^(i-1))))
%o A096641 /* The following uses Komatsu's expression for given a; a0=0, m=1 */
%o A096641 {Komatsu(a)=suminf(s=0,a^(-(s+1)^2)*prod(i=1,s,(a^(2*i)-1)^(-1))) /suminf(s=0,a^(-s^2)*prod(i=1,s,(a^(2*i)-1)^(-1)))}
%o A096641 Komatsu(2) /* generates this sequence's constant */
%Y A096641 Cf. A155559, A214070, A275614.
%K A096641 cons,nonn
%O A096641 0,1
%A A096641 _Rick L. Shepherd_, Jun 30 2004