cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096651 Lower triangular matrix T, read by rows, such that the row sums of T^n form the n-dimensional partitions.

This page as a plain text file.
%I A096651 #23 Jan 20 2025 03:52:59
%S A096651 1,0,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,1,3,1,1,0,1,3,1,4,1,1,0,1,-1,7,1,5,
%T A096651 1,1,0,1,15,-17,14,1,6,1,1,0,1,-78,133,-61,25,1,7,1,1,0,1,632,-1020,
%U A096651 529,-152,41,1,8,1,1,0,1,-6049,9826,-4989,1506,-314,63,1,9,1,1,0,1,68036,-110514,56161,-16668,3532,-576,92,1,10,1,1,0,1,-878337,1427046,-724881,214528,-44703,7276,-972,129,1,11,1,1,0,1,12817659,-20827070,10576885,-3123249,647092,-103476,13644,-1541,175,1,12,1,1
%N A096651 Lower triangular matrix T, read by rows, such that the row sums of T^n form the n-dimensional partitions.
%C A096651 Hanna's Triangle: There exists a unique lower triangular matrix T, with ones on its diagonal, such that the row sums of T^n yields the n-dimensional partitions for all n>0. Specifically, row sums of T form A000041 (linear partitions); row sums of T^2 form A000219 (planar partitions); row sums of T^3 form A000293 (solid partitions); row sums of T^4 form A000334(4-D); row sums of T^5 form A000390(5-D); row sums of T^6 form A000416(6-D); row sums of T^7 form A000427(7-D). Rows indexed 9-13 were calculated by _Wouter Meeussen_.
%C A096651 Existence and integrality of Hanna's triangle has been proved in arXiv:1203.4419. (Suresh Govindarajan)
%H A096651 S. Govindarajan <a href="http://arxiv.org/abs/1203.4419">Notes on higher-dimensional partitions</a>, arXiv:1203.4419 [math.CO], 2012.
%H A096651 Wouter Meeussen, <a href="/A096651/a096651.txt">Rows 14-17 added</a>
%F A096651 For n>=0: T(0, 0)=1, T(n+1,0)=0, T(n+1,1)=1. For n>=1: T(n, n)=1, T(n+1, n)=1, T(n+2, n)=n, T(n+3, n)=1, T(n+4, n)=n*(5+n^2)/6, T(n+5, n)=(-48+90*n-7*n^2-6*n^3-5*n^4)/24, T(n+6, n)=(400-382*n-55*n^2+30*n^3+35*n^4+12*n^5)/40 (_Wouter Meeussen_). Corrected entry for the zeroth and first columns of the matrix T -- entry had columns and rows interchanged (Corrected by Suresh Govindarajan)
%F A096651 G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], where P_n(y) is the n-th row polynomial of triangle A096800.
%e A096651 Triangle T begins:
%e A096651   {1},
%e A096651   {0,1},
%e A096651   {0,1,1},
%e A096651   {0,1,1,1},
%e A096651   {0,1,2,1,1},
%e A096651   {0,1,1,3,1,1},
%e A096651   {0,1,3,1,4,1,1},
%e A096651   {0,1,-1,7,1,5,1,1},
%e A096651   {0,1,15,-17,14,1,6,1,1},
%e A096651   {0,1,-78,133,-61,25,1,7,1,1},
%e A096651   {0,1,632,-1020,529,-152,41,1,8,1,1},
%e A096651   {0,1,-6049,9826,-4989,1506,-314,63,1,9,1,1},
%e A096651   {0,1,68036,-110514,56161,-16668,3532,-576,92,1,10,1,1},
%e A096651   {0,1,-878337,1427046,-724881,214528,-44703,7276,-972,129,1,11,1,1},
%e A096651   ...
%e A096651   with row sums: {1,1,2,3,5,7,11,15,22,...} (A000041).
%e A096651 T^2 begins:
%e A096651   {1},
%e A096651   {0,1},
%e A096651   {0,2,1},
%e A096651   {0,3,2,1},
%e A096651   {0,5,5,2,1},
%e A096651   {0,7,7,7,2,1},
%e A096651   {0,11,16,9,9,2,1},
%e A096651   {0,15,15,31,11,11,2,1},
%e A096651   {0,22,59,-4,54,13,13,2,1},
%e A096651   ...
%e A096651   with row sums: {1,1,3,6,13,24,48,86,...} (A000219).
%Y A096651 Cf. A000041, A000219, A000293, A000334, A000390, A000416, A000427, A096652(T^2), A096653(T^3), A096642-A096645(columns).
%Y A096651 Cf. A096800, A096751.
%K A096651 nice,sign,tabl
%O A096651 0,13
%A A096651 _Paul D. Hanna_ and _Wouter Meeussen_, Jul 02 2004
%E A096651 Rows 14-17 calculated (using extra terms in A096642-A096645 provided by _Sean A. Irvine_) by _Wouter Meeussen_, Jan 08 2011