cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096670 Rectangular array T(n,k) read by antidiagonals; generating function of column n is 1/F(n,x), where F(n,x) is the polynomial 1 - x - x^2 - 2*x^3 -...- F(n+1)*x^n and F(n+1) is the (n+1)st Fibonacci number, for n=0,1,2,...

This page as a plain text file.
%I A096670 #3 Mar 30 2012 18:57:05
%S A096670 1,1,1,1,1,1,1,1,2,1,1,1,2,3,1,1,1,2,5,5,1,1,1,2,5,9,8,1,1,1,2,5,12,
%T A096670 18,13,1,1,1,2,5,12,24,37,21,1,1,1,2,5,12,29,52,73,34,1,1,1,2,5,12,29,
%U A096670 62,115,146,55,1,1,1,2,5,12,29,70,140,251,293,89,1,1,1,2,5,12,29,70,156
%N A096670 Rectangular array T(n,k) read by antidiagonals; generating function of column n is 1/F(n,x), where F(n,x) is the polynomial 1 - x - x^2 - 2*x^3 -...- F(n+1)*x^n and F(n+1) is the (n+1)st Fibonacci number, for n=0,1,2,...
%C A096670 Transpose of the array in A096669.
%e A096670 Rows
%e A096670 1 1 1 1 1
%e A096670 1 1 1 1 1
%e A096670 1 2 2 2 2
%e A096670 1 3 5 5 5
%e A096670 1 5 9 12 12
%e A096670 Column 0 has g.f. 1/(1-x)
%e A096670 Column 1 has g.f. 1/(1-x-x^2)
%e A096670 Column 2 has g.g. 1/(1-x-x^2-2*x^3).
%Y A096670 Cf. A000045, A096669, A000129.
%K A096670 nonn,tabl
%O A096670 1,9
%A A096670 _Clark Kimberling_, Jul 03 2004