cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096696 Consider the n-th prime, p_n, as the beginning of 2k+1 consecutive primes; then a(n) = p_(n+k) a balanced prime of order k, k maximized, or 0 if no such prime exists.

Original entry on oeis.org

0, 5, 29, 37, 0, 0, 0, 0, 0, 149, 53, 0, 53, 71, 137, 227, 0, 0, 89, 79, 0, 0, 0, 0, 179, 0, 0, 173, 173, 0, 0, 419, 0, 157, 0, 157, 173, 0, 173, 0, 263, 0, 0, 0, 0, 211, 229, 0, 353, 397, 0, 0, 353, 359, 409, 577, 0, 353, 383, 353, 0, 0, 0, 0, 0, 0, 349, 349, 0, 0, 0, 397, 373
Offset: 1

Views

Author

Robert G. Wilson v, Jul 02 2004

Keywords

Comments

a(n) either equals 0 or belongs to A090403.

Examples

			a(2) = 5 because beginning with the second prime, 3, there is a run of three prime, (3,5,7) the average and median of which is 5.
a(5) = 0 because there does not exist a run of 2k + 1 primes such that the arithmetic mean and the median are the same.
		

Crossrefs

Cf. A090403.

Programs

  • Mathematica
    f[n_] := Block[{k = 1, p = 0}, While[k < 10^4, If[(Plus @@ Table[Prime[i], {i, n, n + 2k}]) == (2k + 1)Prime[n + k], p = Prime[n + k]]; k++ ]; p]; Table[ f[n], {n, 74}]