This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096714 #24 Feb 16 2025 08:32:53 %S A096714 2,3,3,8,1,0,7,4,1,0,4,5,9,7,6,7,0,3,8,4,8,9,1,9,7,2,5,2,4,4,6,7,3,5, %T A096714 4,4,0,6,3,8,5,4,0,1,4,5,6,7,2,3,8,7,8,5,2,4,8,3,8,5,4,4,3,7,2,1,3,6, %U A096714 6,8,0,0,2,7,0,0,2,8,3,6,4,7,7,8,2,1,6,4,0,4,1,7,3,1,3,2,9,3,2,0,2,8 %N A096714 First (least negative) real zero of the Airy Ai function (negated). %H A096714 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AiryFunctions.html">Airy Functions</a>. %e A096714 -2.33810741045976703848919725244673544063854014567238... %t A096714 RealDigits[AiryAiZero[1], 10, 100][[1]] (* _Amiram Eldar_, Jun 27 2021 *) %o A096714 (PARI) Ain(x)=sqrt((-x)/9)*(besselj(1/3,2/3*(-x)^(3/2)) + besselj(-1/3,2/3*(-x)^(3/2))) \\ Airy function Ai(x) for x < 0 %o A096714 -solve(x=-2.5,-2.2,Ain(x)) \\ _Thomas König_, Jan 29 2017 %o A096714 (PARI) -solve(x=-2.4,-2.3, airy(x)[1]) \\ _Charles R Greathouse IV_, Apr 27 2019 %o A096714 (PARI) solve(s=1,2, t=2/3*s^3; (besselj(1/3, t) + besselj(-1/3, t))*s)^2 \\ _Charles R Greathouse IV_, Aug 09 2022 %Y A096714 Cf. A096715. %K A096714 nonn,cons %O A096714 1,1 %A A096714 _Eric W. Weisstein_, Jul 04 2004