This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096739 #21 Feb 16 2025 08:32:53 %S A096739 353,651,706,1059,1302,1412,1765,1953,2118,2471,2487,2501,2604,2824, %T A096739 2829,3177,3255,3530,3723,3883,3906,3973,4236,4267,4333,4449,4557, %U A096739 4589,4942,4949,4974,5002,5208,5281,5295,5463,5491,5543,5648,5658,5729,5859 %N A096739 Numbers k such that k^4 can be written as a sum of four distinct positive 4th powers. %C A096739 From _David Wasserman_, Nov 16 2007: (Start) %C A096739 Every multiple of a term is a term. %C A096739 Is this sequence the same as A003294? (End) %D A096739 D. Wells, Curious and interesting numbers, Penguin Books, p. 139. %H A096739 K. Rose and S. Brudno, <a href="http://dx.doi.org/10.1090/S0025-5718-1973-0329184-2">More about four biquadrates equal one biquadrate</a>, Math. Comp., 27 (1973), 491-494. %H A096739 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation4thPowers.html">Diophantine Equation 4th Powers</a>. %e A096739 Example solutions: %e A096739 353^4 = 30^4 + 120^4 + 272^4 + 315^4; %e A096739 706^4 = 60^4 + 240^4 + 544^4 + 630^4; %e A096739 1059^4 = 90^4 + 360^4 + 816^4 + 945^4; %e A096739 1302^4 = 480^4 + 680^4 + 860^4 + 1198^4; %e A096739 1412^4 = 120^4 + 480^4 + 1088^4 + 1260^4; %e A096739 3723^4 = 2270^4 + 2345^4 + 2460^4 + 3152^4. %Y A096739 Cf. A003294, A176197. %K A096739 nonn %O A096739 1,1 %A A096739 _Lekraj Beedassy_, May 30 2002 %E A096739 Corrected by Bo Asklund (boa(AT)mensa.se), Nov 05 2004 %E A096739 Corrected and extended by _David Wasserman_, Nov 16 2007