cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096772 A B3-sequence: a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that the sums of any three terms are all distinct.

Original entry on oeis.org

1, 2, 5, 14, 33, 72, 125, 219, 376, 573, 745, 1209, 1557, 2442, 3098, 4048, 5298, 6704, 7839, 10987, 12332, 15465, 19144, 24546, 28974, 34406, 37769, 45864, 50877, 61372, 68303, 77918, 88545, 101917, 122032, 131625, 148575, 171237, 197815, 201454
Offset: 1

Views

Author

Rick L. Shepherd, Aug 15 2004

Keywords

Comments

This is the B3-sequence analog of the Mian-Chowla B2-sequence (A005282): Let a(1)=1; then use the greedy algorithm to choose the smallest a(n) > a(n-1) such that all sums a(i) + a(j) + a(k) are distinct for 1 <= i <= j <= k <= n. The reciprocal sum of the sequence for the first forty terms is 1.837412....

Crossrefs

Row 3 of A347570.
Cf. A005282 (Mian-Chowla B2-sequence). A051912.

Programs

  • Python
    from itertools import count, islice
    def A096772_gen(): # generator of terms
        aset1, aset2, aset3, alist = set(), set(), set(), []
        for k in count(1):
            bset2, bset3 = {k<<1}, {3*k}
            if 3*k not in aset3:
                for d in aset1:
                    if (m:=d+(k<<1)) in aset3:
                        break
                    bset2.add(d+k)
                    bset3.add(m)
                else:
                    for d in aset2:
                        if (m:=d+k) in aset3:
                            break
                        bset3.add(m)
                    else:
                        yield k
                        alist.append(k)
                        aset1.add(k)
                        aset2 |= bset2
                        aset3 |= bset3
    A096772_list = list(islice(A096772_gen(),30)) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A051912(n-1) + 1. - Peter Kagey, Oct 20 2021