A096772 A B3-sequence: a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that the sums of any three terms are all distinct.
1, 2, 5, 14, 33, 72, 125, 219, 376, 573, 745, 1209, 1557, 2442, 3098, 4048, 5298, 6704, 7839, 10987, 12332, 15465, 19144, 24546, 28974, 34406, 37769, 45864, 50877, 61372, 68303, 77918, 88545, 101917, 122032, 131625, 148575, 171237, 197815, 201454
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..176
- Eric Weisstein's World of Mathematics, B2-Sequence.
- Eric Weisstein's World of Mathematics, Mian-Chowla Sequence.
Programs
-
Python
from itertools import count, islice def A096772_gen(): # generator of terms aset1, aset2, aset3, alist = set(), set(), set(), [] for k in count(1): bset2, bset3 = {k<<1}, {3*k} if 3*k not in aset3: for d in aset1: if (m:=d+(k<<1)) in aset3: break bset2.add(d+k) bset3.add(m) else: for d in aset2: if (m:=d+k) in aset3: break bset3.add(m) else: yield k alist.append(k) aset1.add(k) aset2 |= bset2 aset3 |= bset3 A096772_list = list(islice(A096772_gen(),30)) # Chai Wah Wu, Sep 05 2023
Formula
a(n) = A051912(n-1) + 1. - Peter Kagey, Oct 20 2021
Comments