This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096806 #19 Jan 22 2025 06:02:51 %S A096806 1,1,1,1,2,1,1,4,4,1,1,6,11,7,1,1,10,27,28,11,1,1,14,57,93,64,16,1,1, %T A096806 21,117,269,282,131,22,1,1,29,223,707,1062,766,244,29,1,1,41,417,1747, %U A096806 3565,3681,1871,421,37,1,1,55,748,4090,10999,15489,11400,4152,683,46,1,1,76 %N A096806 Triangle, read by rows, such that the binomial transform of the n-th row lists the m-dimensional partitions of n, for n>=1 and m>=0. %C A096806 The n-th row equals the inverse binomial transform of n-th column of square array A096751, for n>=1. The zero-dimensional partition of n is taken to be 1 for all n. %H A096806 S. Govindarajan, <a href="http://arxiv.org/abs/1203.4419">Notes on higher-dimensional partitions</a>, arXiv:1203.4419 [math.CO], 2012. %F A096806 T(n, 0)=T(n, n-1)=1, T(n, 1)=A000041(n)-1, T(n, n-2)=(n-1)*(n-2)/2+1, for n>=1. %e A096806 The number of m-dimensional partitions of 5, for m>=0, is given by the binomial transform of the 5th row: %e A096806 BINOMIAL([1,6,11,7,1]) = [1,7,24,59,120,216,357,554,819,1165,...] = A008779. %e A096806 Rows begin: %e A096806 [1], %e A096806 [1, 1], %e A096806 [1, 2, 1], %e A096806 [1, 4, 4, 1], %e A096806 [1, 6, 11, 7, 1], %e A096806 [1, 10, 27, 28, 11, 1], %e A096806 [1, 14, 57, 93, 64, 16, 1], %e A096806 [1, 21, 117, 269, 282, 131, 22, 1], %e A096806 [1, 29, 223, 707, 1062, 766, 244, 29, 1], %e A096806 [1, 41, 417, 1747, 3565, 3681, 1871, 421, 37, 1], %e A096806 [1, 55, 748, 4090, 10999, 15489, 11400, 4152, 683, 46, 1], %e A096806 [1, 76,1326, 9219, 31828, 58975, 59433, 31802, 8483, 1054, 56, 1], %e A096806 [1,100,2284,20095, 87490,207735, 276230, 204072, 80664, 16162, 1561, 67, 1], %e A096806 [1,134,3898,42707,230737,687665,1173533,1148939,632478,188077,29031,2234,79,1], %e A096806 ... %e A096806 The inverse binomial transform of the diagonals of this triangle begin: %e A096806 [1], %e A096806 [1, 1, 1], %e A096806 [1, 3, 4, 6, 3], %e A096806 [1, 5, 16, 29, 49, 45, 15], %e A096806 [1, 9, 38, 127, 289, 540, 660, 420, 105], %e A096806 [1,13, 90, 397,1384, 3633, 7506, 10920,9765,4725,945], %e A096806 [1,20,182,1140,5266,19324,55645,125447, ? , ? , ? ,62370,10395], %e A096806 ... %Y A096806 Cf. A096751, A096807 (row sums), A000065 (column k=1?), A008778 (bin trans 4th row), A042984 (bin trans 6th row) %Y A096806 Cf. A119271. %K A096806 nonn,tabl %O A096806 1,5 %A A096806 _Paul D. Hanna_, Jul 19 2004