A096826 Number of maximal-sized antichains in divisor lattice D(n).
1, 2, 2, 3, 2, 1, 2, 4, 3, 1, 2, 3, 2, 1, 1, 5, 2, 3, 2, 3, 1, 1, 2, 6, 3, 1, 4, 3, 2, 2, 2, 6, 1, 1, 1, 1, 2, 1, 1, 6, 2, 2, 2, 3, 3, 1, 2, 10, 3, 3, 1, 3, 2, 6, 1, 6, 1, 1, 2, 1, 2, 1, 3, 7, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 3, 3, 1, 2, 2, 10, 5, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Aug 24 2018: (Start) The a(120) = 6 antichains: {8,12,20,30} {8,12,15,20} {8,10,12,15} {6,8,15,20} {6,8,10,15} {4,6,10,15} (End)
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
Programs
-
Sage
def A096826(n) : if n==1 : return 1 R.
= QQ[]; mults = [x[1] for x in factor(n)] maxsize = prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2] dlat = LatticePoset((divisors(n), attrcall("divides"))) count = 0 for ac in dlat.antichains_iterator() : if len(ac) == maxsize : count += 1 return count # Eric M. Schmidt, May 13 2013
Extensions
More terms from Eric M. Schmidt, May 13 2013
Comments