cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096826 Number of maximal-sized antichains in divisor lattice D(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 4, 3, 1, 2, 3, 2, 1, 1, 5, 2, 3, 2, 3, 1, 1, 2, 6, 3, 1, 4, 3, 2, 2, 2, 6, 1, 1, 1, 1, 2, 1, 1, 6, 2, 2, 2, 3, 3, 1, 2, 10, 3, 3, 1, 3, 2, 6, 1, 6, 1, 1, 2, 1, 2, 1, 3, 7, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 3, 3, 1, 2, 2, 10, 5, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 17 2004

Keywords

Comments

The divisor lattice D(n) is the lattice of the divisors of the natural number n.

Examples

			From _Gus Wiseman_, Aug 24 2018: (Start)
The a(120) = 6 antichains:
  {8,12,20,30}
  {8,12,15,20}
  {8,10,12,15}
  {6,8,15,20}
  {6,8,10,15}
  {4,6,10,15}
(End)
		

Crossrefs

Programs

  • Sage
    def A096826(n) :
        if n==1 : return 1
        R. = QQ[]; mults = [x[1] for x in factor(n)]
        maxsize = prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2]
        dlat = LatticePoset((divisors(n), attrcall("divides")))
        count = 0
        for ac in dlat.antichains_iterator() :
            if len(ac) == maxsize : count += 1
        return count
    # Eric M. Schmidt, May 13 2013

Extensions

More terms from Eric M. Schmidt, May 13 2013