cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A096848 Primes arising in A096847.

Original entry on oeis.org

2, 5, 17, 233, 683, 769, 4013, 5039, 28649, 29663, 24917, 15173, 24179, 105509, 252971, 81083, 871289, 941429, 639701, 199193, 713681, 768389, 873569, 1300813, 1308299, 1019687, 4459667, 1477139, 642779, 3953591, 2040443, 8445707, 4906973
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Primes of the form m*tau(m) - sigma(m), listed in the order in which the values of m appear in A096847.

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A094471, A096847.

Programs

  • Mathematica
    Do[s=n*DivisorSigma[0, n]-DivisorSigma[1, n];If[PrimeQ[s], Print[{n, s}];ta[[u]]=n;tb[[u]]=s;u=u+1], {n, 1, 1000000}];ta
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; n * Times @@ (e + 1) - Times @@ ((p^(e + 1) - 1)/(p - 1))]; q[n_] := PrimeQ[s[n]]; seq[lim_] := Module[{m1 = Floor[Sqrt[lim/2]], m2 = Floor[Sqrt[lim]/2]}, s /@ Join[{3}, Union[Select[2*Range[m1]^2, q], Select[4*Range[m2]^2, q]]]]; seq[200000] (* Amiram Eldar, Feb 14 2025 *)

Formula

a(n) = A094471(A096847(n)).
Showing 1-1 of 1 results.