cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096852 a(n) is the length of terminal cycle of the trajectory of f(x)=phi(sigma(x)) if started at 2^n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 6, 2, 1, 6, 2, 1, 2, 3, 11, 11, 2, 2, 15, 15, 18, 18, 18, 18, 12, 12, 12, 1
Offset: 0

Views

Author

Labos Elemer, Jul 16 2004

Keywords

Examples

			n=18: start = 262144 and the corresponding 11-cycle is 262144, 524286, [368640, 381024, 326592, 550368, 435456, 580608, 851840, 552960, 524160, 442368, 432000], 368640, ...
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := Block[{lst = NestWhileList[g, n, UnsameQ, All]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Table[ f[2^n], {n, 0, 20}]
  • PARI
    f(x)=eulerphi(sigma(x))
    a(n)=my(t=f(2^n), h=f(t), s); while(t!=h, t=f(t); h=f(f(h))); t=f(t); h=f(t); s=1; while(t!=h, s++; t=f(t); h=f(f(h))); s \\ Charles R Greathouse IV, Nov 27 2013

Formula

a(n) = A095955(2^n). - Charles R Greathouse IV, Nov 27 2013

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jul 17 2004