cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096857 a[n] is the length of terminal cycle of the trajectory of g[x]=sigma(phi(x)) if started at 2^n. Formally identical to A096852, but arguments are shifted by 1 and the iterated functions are different!.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 6, 2, 1, 6, 2, 1, 2, 3, 11, 11, 2, 2, 15, 15, 18, 18, 18, 18, 12, 12, 12, 1
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Comments

Offset=1 in contrast to A096852, where offset=0. Also the iterated functions deviate: A062401 iterated in A096852 and A062402 is repeated here; A096852(n)=A096857(n+1) appears to be true. While cycle-lengths seem identical, the composition of cycles are mostly different!

Examples

			n=5:iv=32 list={32,[31,72,60]} length=a(5)=3, while the parallel case of A096852(n)=b(n) is b[4] with [16,24,30] cycle.
Also A096857[11] starts with 2048 ends in 6-cycle: {2048,2047,4123,10890,8928,[9906,9920,12264,10200,6138,6045],9906,..
while A096852[11-1]=6 and the relevant 6-cycle is {1024,1936,3240,2640,[2880,3024,3840,3456,2560,1800],2880,... These are different cycles with identical lengths.
The initial value 146 leads to list with enormous terms.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSigma[1, EulerPhi[n]]; g[n_] := Block[{l = NestWhileList[f, 2^n, UnsameQ, All]}, -Subtract @@ Flatten[Position[l, l[[ -1]]]]]; Table[ g[n], {n, 25}] (* Robert G. Wilson v, Jul 21 2004 *)