This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096884 #44 Aug 10 2025 17:01:56 %S A096884 1,101,10201,1030301,104060401,10510100501,1061520150601, %T A096884 107213535210701,10828567056280801,1093685272684360901, %U A096884 110462212541120451001,11156683466653165551101,1126825030131969720661201,113809328043328941786781301,11494742132376223120464911401,1160968955369998535166956051501 %N A096884 a(n) = 101^n. %C A096884 A185817(n) = smallest m such that in decimal representation n is a prefix of a(m). %C A096884 a(n) gives the n-th row of Pascals' triangle (A007318) as long as all the binomial coefficients have at most two digits, otherwise the binomial coefficients with more than two digits overlap. - _Daniel Forgues_, Aug 12 2012 %C A096884 From _Peter M. Chema_, Apr 10 2016: (Start) %C A096884 One percent growth applied n times increases a value by factor of a(n)/10^(2n), since 1% increases using "1.01". Therefore (a(n)/10^(2n) - 1)*100 = the percentage increase of one percent growth applied n times. %C A096884 For instance, 432 increasing by 1% three times gives 445.090032 (i.e., 432*1.01^3), which is 1.030301 (a(3)/10^(2*3)) times 432 or a 3.0301% increase from the original 432 ((a(3)/10^(2*3)-1)*100 = 3.0301). (End) %H A096884 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A096884 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (101). %F A096884 a(n) = Sum_{k=0..n} binomial(n, k)*10^(n-k). %F A096884 a(n) = A096883(2n). %F A096884 a(n) = 101^n. a(n) = Sum_{k=0..n,} binomial(n, k)*100^k. - _Paul Barry_, Aug 24 2004 %F A096884 G.f.: 1/(1-101*x). - _Philippe Deléham_, Nov 25 2008 %F A096884 E.g.f.: exp(101*x). - _Ilya Gutkovskiy_, Apr 10 2016 %t A096884 Table[101^n, {n, 0, 15}] (* _Ilya Gutkovskiy_, Apr 10 2016 *) %o A096884 (PARI) a(n)=101^n \\ _Charles R Greathouse IV_, Oct 16 2015 %o A096884 (PARI) my(x='x+O('x^20)); Vec(1/(1-101*x)) \\ _Altug Alkan_, Apr 10 2016 %Y A096884 Cf. A007318, A003590, A001020, A097659. %K A096884 easy,nonn %O A096884 0,2 %A A096884 _Paul Barry_, Jul 14 2004