cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096885 Related to diagonals of Pascal's triangle.

This page as a plain text file.
%I A096885 #19 Aug 05 2024 20:36:33
%S A096885 1,100,10001,1000200,100030001,10004000300,1000500060001,
%T A096885 100060010000400,10007001500100001,1000800210020000500,
%U A096885 100090028003500150001,10010003600560035000600,1001100450084007000210001,100120055012001260056000700,10013006601650210012600280001,1001400780220033002520084000800
%N A096885 Related to diagonals of Pascal's triangle.
%H A096885 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A096885 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (100,1).
%F A096885 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*100^(n-2k).
%F A096885 From _Philippe Deléham_, Nov 23 2008: (Start)
%F A096885 a(n) = 100*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=100.
%F A096885 G.f.: 1/(1-100*x-x^2). (End)
%F A096885 E.g.f.: exp(50*x)*(cosh(sqrt(2501)*x) + 50*sinh(sqrt(2501)*x)/sqrt(2501)). - _Stefano Spezia_, Aug 05 2024
%Y A096885 Cf. A096884, A007318, A000045.
%K A096885 easy,nonn
%O A096885 0,2
%A A096885 _Paul Barry_, Jul 14 2004
%E A096885 a(12)-a(15) from _Stefano Spezia_, Aug 05 2024