This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096886 #30 Apr 25 2023 15:29:03 %S A096886 1,3,8,24,64,192,512,1536,4096,12288,32768,98304,262144,786432, %T A096886 2097152,6291456,16777216,50331648,134217728,402653184,1073741824, %U A096886 3221225472,8589934592,25769803776,68719476736,206158430208,549755813888 %N A096886 Expansion of (1+3*x)/(1-8*x^2). %C A096886 From _R. J. Mathar_, Oct 12 2010: (Start) %C A096886 Apparently the row n=3 of an array T(n,k) counting walks with k steps on an n X n board starting at an edge position next to a corner, each step to one of the <= 4 adjacent squares: %C A096886 1, 3, 8, 24, 64, 192, 512, 1536, 4096, 12288, 32768, 98304, 262144, ... %C A096886 1, 3, 9, 29, 93, 301, 973, 3149, 10189, 32973, 106701, 345293, 1117389, ... %C A096886 1, 3, 9, 30, 99, 342, 1161, 4050, 13851, 48438, 165969, 580770, 1990899, ... %C A096886 1, 3, 9, 30, 100, 349, 1216, 4329, 15381, 55187, 197714, 711458, 2557699, ... %C A096886 1, 3, 9, 30, 100, 350, 1224, 4400, 15776, 57552, 209088, 768768, 2812160, ... %C A096886 1, 3, 9, 30, 100, 350, 1225, 4409, 15865, 58091, 212586, 786708, 2909166, ... %C A096886 1, 3, 9, 30, 100, 350, 1225, 4410, 15875, 58200, 213300, 791700, 2936375, ... %C A096886 1, 3, 9, 30, 100, 350, 1225, 4410, 15876, 58211, 213431, 792623, 2943291, ... %C A096886 1, 3, 9, 30, 100, 350, 1225, 4410, 15876, 58212, 213443, 792778, 2944460, ... %C A096886 1, 3, 9, 30, 100, 350, 1225, 4410, 15876, 58212, 213444, 792791, 2944641, ... %C A096886 ... %C A096886 (End) %H A096886 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,8). %F A096886 G.f.: (1+3*x)/(1-8*x^2). %F A096886 a(n) = (1 + (-1)^n)*8^floor((n+1)/2)/2 + 3*(1-(-1)^n)*8^floor(n/2)/2. %F A096886 a(n) = 2^(3*n/2)*(3*sqrt(2)/8 + 1/2 - (3*sqrt(2)/8 - 1/2)*(-1)^n). %F A096886 a(2n+1) = 2*a(2n) + 2*a(2n-1) + 2*a(2n-2). %F A096886 a(2n) = 2*a(2n-1) + 2*a(2n-2). %F A096886 a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011 %t A096886 CoefficientList[Series[(1+3x)/(1-8x^2),{x,0,30}],x] (* or *) LinearRecurrence[{0,8},{1,3},30] (* _Harvey P. Dale_, Apr 25 2023 *) %Y A096886 Cf. A038754. %K A096886 easy,nonn %O A096886 0,2 %A A096886 _Paul Barry_, Jul 14 2004