This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096917 #21 Nov 03 2024 02:03:44 %S A096917 2,2,2,2,2,2,3,2,2,2,2,2,3,2,2,2,2,2,3,2,2,3,2,2,3,2,2,3,2,3,2,2,2,2, %T A096917 2,3,2,3,2,2,2,5,3,2,2,2,2,2,3,2,2,3,2,2,5,3,2,2,3,2,2,2,2,2,2,3,3,2, %U A096917 2,2,5,2,2,2,3,2,3,2,3,2,2,3,2,3,2,2,3,5,2,2,2,3,2,5,2,3,2,2,3,2,3,2 %N A096917 Smallest prime factor of the n-th product of 3 distinct primes. %H A096917 Amiram Eldar, <a href="/A096917/b096917.txt">Table of n, a(n) for n = 1..10000</a> %F A096917 a(n)*A096918(n)*A096919(n) = A007304(n). %F A096917 a(n) < A096918(n) < A096919(n). %F A096917 a(n) = A020639(A007304(n)). %t A096917 f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f1[n]]],{n,0,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Apr 10 2010 *) %o A096917 (Python) %o A096917 from math import isqrt %o A096917 from sympy import primepi, primerange, integer_nthroot, primefactors %o A096917 def A096917(n): %o A096917 def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) %o A096917 def bisection(f,kmin=0,kmax=1): %o A096917 while f(kmax) > kmax: kmax <<= 1 %o A096917 while kmax-kmin > 1: %o A096917 kmid = kmax+kmin>>1 %o A096917 if f(kmid) <= kmid: %o A096917 kmax = kmid %o A096917 else: %o A096917 kmin = kmid %o A096917 return kmax %o A096917 return min(primefactors(bisection(f))) # _Chai Wah Wu_, Aug 30 2024 %Y A096917 Cf. A020639, A007304, A096918, A096919. %K A096917 nonn %O A096917 1,1 %A A096917 _Reinhard Zumkeller_, Jul 15 2004