cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096945 Eighth column of (1,5)-Pascal triangle A096940.

This page as a plain text file.
%I A096945 #10 Jul 31 2015 12:59:21
%S A096945 5,36,148,456,1170,2640,5412,10296,18447,31460,51480,81328,124644,
%T A096945 186048,271320,387600,543609,749892,1019084,1366200,1808950,2368080,
%U A096945 3067740,3935880,5004675,6310980,7896816,9809888,12104136,14840320
%N A096945 Eighth column of (1,5)-Pascal triangle A096940.
%C A096945 If Y is a 5-subset of an n-set X then, for n>=11, a(n-11) is the number of 7-subsets of X having at most one element in common with Y. > - _Milan Janjic_, Dec 08 2007
%H A096945 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -70, 56, -28, 8, -1).
%F A096945 G.f.: (5-4*x)/(1-x)^8.
%F A096945 a(n)= (n+35)*binomial(n+6, 6)/7 = 5*b(n)-4*b(n-1), with b(n):=A000580(n+7)=binomial(n+7, 7).
%F A096945 a(0)=5, a(1)=36, a(2)=148, a(3)=456, a(4)=1170, a(5)=2640, a(6)=5412, a(7)=10296, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - _Harvey P. Dale_, Aug 16 2014
%t A096945 CoefficientList[Series[(5-4*x)/(1-x)^8,{x,0,30}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{5,36,148,456,1170,2640,5412,10296},30] (* _Harvey P. Dale_, Aug 16 2014 *)
%Y A096945 Seventh column: A096944; ninth column: A096946.
%K A096945 nonn,easy
%O A096945 0,1
%A A096945 _Wolfdieter Lang_, Jul 16 2004