cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096965 Number of sets of even number of even lists, cf. A000262.

This page as a plain text file.
%I A096965 #27 Dec 01 2021 10:54:55
%S A096965 1,1,1,7,37,241,2101,18271,201097,2270017,29668681,410815351,
%T A096965 6238931821,101560835377,1765092183037,32838929702671,644215775792401,
%U A096965 13441862819232001,293976795292186897,6788407001443004647,163735077313046119861,4142654439686285737201
%N A096965 Number of sets of even number of even lists, cf. A000262.
%H A096965 Vincenzo Librandi, <a href="/A096965/b096965.txt">Table of n, a(n) for n = 0..200</a>
%F A096965 E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).
%F A096965 a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - _Vladimir Kruchinin_, Mar 10 2013
%F A096965 Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - _Vaclav Kotesovec_, Sep 29 2013
%F A096965 a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - _Vaclav Kotesovec_, Sep 29 2013
%F A096965 From _Alois P. Heinz_, Dec 01 2021: (Start)
%F A096965 a(n) = A000262(n) - A096939(n).
%F A096965 a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)
%p A096965 a:= proc(n) option remember;  `if`(n<4, [1$3, 7][n+1], ((2*n-3)
%p A096965       *a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5)
%p A096965       *a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2))
%p A096965     end:
%p A096965 seq(a(n), n=0..25);  # _Alois P. Heinz_, Dec 01 2021
%t A096965 Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* _Robert G. Wilson v_, Aug 19 2004 *)
%Y A096965 Cf. A000262, A088026, A088009, A096939, A349776.
%K A096965 easy,nonn
%O A096965 0,4
%A A096965 _Vladeta Jovovic_, Aug 18 2004
%E A096965 More terms from _Robert G. Wilson v_, Aug 19 2004
%E A096965 a(0)=1 prepended by _Alois P. Heinz_, Dec 01 2021