This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096975 #55 Nov 05 2024 06:29:16 %S A096975 3,1,5,4,13,16,38,57,117,193,370,639,1186,2094,3827,6829,12389,22220, %T A096975 40169,72220,130338,234609,423065,761945,1373466,2474291,4459278, %U A096975 8034394,14478659,26088169,47011093,84708772,152642789,275049240 %N A096975 Trace sequence of a path graph plus loop. %C A096975 Let A be the adjacency matrix of the graph P_3 with a loop added at the end. Then a(n) = trace(A^n). A is a 'reverse Jordan matrix' [0,0,1;0,1,1;1,1,0]. a(n) = abs(A094648(n)). %C A096975 From _L. Edson Jeffery_, Mar 22 2011: (Start) %C A096975 Let A be the unit-primitive matrix (see [Jeffery]) %C A096975 A = A_(7,1) = %C A096975 (0 1 0) %C A096975 (1 0 1) %C A096975 (0 1 1). %C A096975 Then a(n) = Trace(A^n). (End) %H A096975 Michael De Vlieger, <a href="/A096975/b096975.txt">Table of n, a(n) for n = 0..3910</a> %H A096975 A. Akbary, Q. Wang, <a href="http://dx.doi.org/10.1090/S0002-9939-05-08220-1">A generalized Lucas sequence and permutations binomials</a>, Proc. Am. Math. Soc. 134 (2006) 15-22, sequence a(n) with l=7. %H A096975 Robin Chapman and Nicholas C. Singer, <a href="http://www.jstor.org/stable/4145281">Eigenvalues of a bidiagonal matrix</a>, Amer. Math. Monthly, 111 (2004), p. 441. %H A096975 Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, <a href="https://arxiv.org/abs/2210.12411">On a variant of Flory model</a>, arXiv:2210.12411 [math.CO], 2022. %H A096975 L. E. Jeffery, <a href="/wiki/User:L._Edson_Jeffery/Unit-Primitive_Matrices">Unit-primitive matrix</a> %H A096975 Genki Shibukawa, <a href="https://arxiv.org/abs/1907.00334">New identities for some symmetric polynomials and their applications</a>, arXiv:1907.00334 [math.CA], 2019. %H A096975 Q. Wang, <a href="https://www.semanticscholar.org/paper/On-generalized-Lucas-sequences-Wang-Akbari/7e33b3b79703dc6790fca133e8c92cc0cafcfe4a">On generalized Lucas sequences</a>, Contemp. Math. 531 (2010) 127-141, Table 1 (k=3). %H A096975 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1). %F A096975 G.f.: (3-2*x-2*x^2)/(1-x-2*x^2+x^3); %F A096975 a(n) = a(n-1) + 2*a(n-2) - a(n-3); %F A096975 a(n) = (2*sqrt(7)*sin(atan(sqrt(3)/9)/3)/3+1/3)^n + (1/3-2*sqrt(7)*sin(atan(sqrt(3)/9)/3+Pi/3)/3)^n + (2*sqrt(7)*cos(acot(-sqrt(3)/9)/3)/3+1/3)^n. %F A096975 a(n) = 2^n*((cos(Pi/7))^n+(cos(3*Pi/7))^n+(cos(5*Pi/7))^n). - _Vladimir Shevelev_, Aug 25 2010 %F A096975 a(n) = (-1)^n*A094648(n). - _R. J. Mathar_, Nov 05 2024 %t A096975 CoefficientList[Series[(3 - 2 x - 2 x^2)/(1 - x - 2 x^2 + x^3), {x, 0, 33}], x] (* _Michael De Vlieger_, Aug 21 2019 *) %o A096975 (PARI) {a(n)=if(n>=0, n+=1; polsym(x^3-x^2-2*x+1,n-1)[n], n=1-n; polsym(1-x-2*x^2+x^3,n-1)[n])} /* _Michael Somos_, Aug 03 2006 */ %o A096975 (PARI) a(n)=trace([0,1,0;1,0,1;0,1,1]^n); /* _Joerg Arndt_, Apr 30 2011 */ %Y A096975 Cf. A006053, A052547, A096976. %Y A096975 A033304(n) = a(-1-n). - _Michael Somos_, Aug 03 2006 %K A096975 easy,nonn %O A096975 0,1 %A A096975 _Paul Barry_, Jul 16 2004