This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096981 #40 Nov 28 2024 13:27:05 %S A096981 1,1,1,2,2,3,5,6,7,10,12,15,21,25,30,39,46,56,72,85,101,125,147,175, %T A096981 215,252,296,356,415,487,582,676,786,927,1072,1244,1460,1682,1939, %U A096981 2255,2588,2976,3446,3942,4510,5189,5916,6751,7739,8797,9999,11406,12927,14657 %N A096981 Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6. %C A096981 Also, number of partitions of n in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3. %C A096981 The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938 %D A096981 T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976 %H A096981 Vaclav Kotesovec, <a href="/A096981/b096981.txt">Table of n, a(n) for n = 0..10000</a> %H A096981 Noureddine Chair, <a href="http://arxiv.org/abs/hep-th/0409011">Partition Identities From Partial Supersymmetry</a>, arXiv:hep-th/0409011v1, 2004. %H A096981 Noureddine Chair, <a href="http://arxiv.org/abs/1306.5415">The Euler-Riemann Gases, and Partition Identities</a>, arXiv:1306.5415 [math-ph], 23-June-2013. %H A096981 Donald Spector, <a href="http://arxiv.org/abs/hep-th/9710002">Duality, partial supersymmetry and arithmetic number theory</a>, arXiv:hep-th/9710002, 1997. %H A096981 Donald Spector, <a href="http://dx.doi.org/10.1063/1.532269">Duality, partial supersymmetry and arithmetic number theory</a>, J. Math. Phys. Vol. 39, 1998, p. 1919. %F A096981 Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - _Michael Somos_, Jun 08 2012 %F A096981 Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - _Vladeta Jovovic_, Aug 20 2004 %F A096981 G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)). %F A096981 a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - _Vaclav Kotesovec_, Aug 31 2015 %e A096981 a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2. %e A096981 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ... %e A096981 q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ... %p A096981 series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0,100); %t A096981 CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* _Robert G. Wilson v_, Aug 21 2004 *) %t A096981 nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 31 2015 *) %o A096981 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* _Michael Somos_, Jun 08 2012 */ %o A096981 (Haskell) %o A096981 a096981 = p $ tail a047273_list where %o A096981 p _ 0 = 1 %o A096981 p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m %o A096981 -- _Reinhard Zumkeller_, Feb 19 2013 %Y A096981 Cf. A047273, A056970, A097451, A098884. %K A096981 nonn %O A096981 0,4 %A A096981 _Noureddine Chair_, Aug 19 2004 %E A096981 Better definition from _Vladeta Jovovic_, Aug 20 2004 %E A096981 More terms from _Robert G. Wilson v_, Aug 21 2004 %E A096981 Incorrect b-file replaced by _Vaclav Kotesovec_, Aug 31 2015