A096994 Number of transient terms if f(x)=phi(sigma(x))=A062401 is iterated at initial value 2^n. Equilibrium terms are listed in A096852.
0, 0, 0, 0, 0, 2, 2, 0, 1, 2, 4, 1, 2, 5, 14, 0, 5, 7, 2, 14, 8, 3, 64, 43, 81, 82, 76, 74, 47, 25, 42, 0
Offset: 0
Examples
n=0: trajectory = {1,1,..} so a(0)=0; n=14: transient-length=14, cycle-length=2, a(14)=14, A096852(14)=2; trajectory ={16384, 27000, 23040, 21600, 17280, 15360, 15488, 13824, 9600, 7680, 7200, 12960, 11880, 11520, [10368,14080], 10368, ...}. Values of a(n) for n > 31, with -1 signifying transient lengths yet unknown after 10^4 iterations of f(x): -1, 7, 51, 70, 23, 39, 11, -1, 37, 107, 30, -1, 145, 25, 21, 36, -1, -1, -1, -1, 31, -1, 452, -1, 449, 447, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 40, -1, -1, -1, -1, -1, -1, -1, 279, -1. - _Michael De Vlieger_, May 15 2017
Programs
-
Mathematica
With[{nn = 10^3}, Table[Count[Values@ PositionIndex@ #, k_ /; Length@ k == 1] &@ NestList[EulerPhi@ DivisorSigma[1, #] &, 2^n, nn] /. k_ /; k == nn + 1 -> -1, {n, 31}] ] (* Michael De Vlieger, May 15 2017, Version 10 *)
Comments