This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097054 #37 Feb 16 2025 08:32:54 %S A097054 8,27,32,125,128,216,243,343,512,1000,1331,1728,2048,2187,2197,2744, %T A097054 3125,3375,4913,5832,6859,7776,8000,8192,9261,10648,12167,13824,16807, %U A097054 17576,19683,21952,24389,27000,29791,32768,35937,39304,42875,50653 %N A097054 Nonsquare perfect powers. %C A097054 Terms of A001597 that are not in A000290. %C A097054 All terms of this sequence are also in A070265 (odd powers), but omitting those odd powers that are also a square (e.g. 64=4^3=8^2). %H A097054 Reinhard Zumkeller, <a href="/A097054/b097054.txt">Table of n, a(n) for n = 1..10000</a> %H A097054 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>. %H A097054 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OddPower.html">Odd Power</a>. %F A097054 A052409(a(n)) is odd. - _Reinhard Zumkeller_, Mar 28 2014 %F A097054 Sum_{n>=1} 1/a(n) = 1 - zeta(2) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 0.2295303015... - _Amiram Eldar_, Dec 21 2020 %p A097054 # uses code of A001597 %p A097054 for n from 4 do %p A097054 if not issqr(n) and isA001597(n) then %p A097054 printf("%d,\n",n); %p A097054 end if; %p A097054 end do: # _R. J. Mathar_, Jan 13 2021 %t A097054 nn = 50653; Select[Union[Flatten[Table[n^i, {i, Prime[Range[2, PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]], ! IntegerQ[Sqrt[#]] &] (* _T. D. Noe_, Apr 19 2011 *) %o A097054 (Haskell) %o A097054 import Data.Map (singleton, findMin, deleteMin, insert) %o A097054 a097054 n = a097054_list !! (n-1) %o A097054 a097054_list = f 9 (3, 2) (singleton 4 (2, 2)) where %o A097054 f zz (bz, be) m %o A097054 | xx < zz && even be = %o A097054 f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m) %o A097054 | xx < zz = xx : %o A097054 f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m) %o A097054 | xx > zz = f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m) %o A097054 | otherwise = f (zz + 2 * bz + 1) (bz + 1, 2) m %o A097054 where (xx, (bx, be)) = findMin m %o A097054 -- _Reinhard Zumkeller_, Mar 28 2014 %o A097054 (PARI) is(n)=ispower(n)%2 \\ _Charles R Greathouse IV_, Aug 28 2016 %o A097054 (PARI) list(lim)=my(v=List()); forprime(e=3,logint(lim\=1,2), for(b=2,sqrtnint(lim,e), if(!issquare(b), listput(v,b^e)))); Set(v) \\ _Charles R Greathouse IV_, Jan 09 2023 %o A097054 (Python) %o A097054 from sympy import mobius, integer_nthroot %o A097054 def A097054(n): %o A097054 def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(3,x.bit_length()))) %o A097054 kmin, kmax = 1,2 %o A097054 while f(kmax) >= kmax: %o A097054 kmax <<= 1 %o A097054 while True: %o A097054 kmid = kmax+kmin>>1 %o A097054 if f(kmid) < kmid: %o A097054 kmax = kmid %o A097054 else: %o A097054 kmin = kmid %o A097054 if kmax-kmin <= 1: %o A097054 break %o A097054 return kmax # _Chai Wah Wu_, Aug 14 2024 %Y A097054 Cf. A001597 (perfect powers), A000290 (the squares), A008683, A070265 (odd powers), A097055, A097056, A239870, A239728, A093771. %K A097054 nonn,easy %O A097054 1,1 %A A097054 _Hugo Pfoertner_, Jul 21 2004