A097100 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n containing k subwords of the type U H^j U or D H^j D for some j>0, where U=(1,1), H=(1,0) and D=(1,-1) (can be easily expressed using RNA secondary structure terminology).
1, 1, 1, 2, 4, 8, 15, 2, 28, 8, 1, 53, 24, 5, 102, 62, 21, 199, 152, 68, 4, 391, 366, 196, 24, 1, 773, 868, 531, 104, 7, 1537, 2032, 1393, 368, 43, 3075, 4694, 3593, 1172, 195, 6, 6189, 10732, 9120, 3528, 754, 48, 1, 12525, 24348, 22822, 10224, 2632, 272, 9
Offset: 0
Examples
Triangle starts: 1; 1; 1; 2; 4; 8; 15,2; 28,8,1; 53,24,5; ... It seems that, except for the first 3 rows, rows 4n-1, 4n, 4n+1 have 2n-1 terms and rows 4n+2 have 2n terms (n=1,2,...). T(8,2)=5 because we have (UHU)H(DHD)H, (UHU)HH(DHD), H(UHU)H(DHD), (UHHU)H(DHD) and (UHU)H(DHHD); the required subwords are shown between parentheses.
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08; Sem. Loth. Comb. B08l (1984) 79-86.
Programs
-
Maple
eq := G = 1+z*G+z^2*G*(z+(1-z+t*z)^2*(G-z*G-1))/(1-z): G:= RootOf(eq,G): Gser := simplify(series(G,z=0,20)): for n from 0 to 19 do P[n] := sort(coeff(Gser,z,n)) end do: for n from 0 to 19 do seq(coeff(P[n],t,j), j=0 .. degree(P[n])) end do; # yields sequence in triangular form
Formula
G.f.: G=G(t, z) satisfies G=1+zG+z^2*G*[z+(1-z+t*z)^2*(G-zG-1)]/(1-z).
Comments