This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097106 #11 Dec 02 2021 13:02:38 %S A097106 0,0,0,0,0,2,0,0,0,2,0,2,0,3,3,0,0,2,0,4,4,4,0,2,0,2,0,2,0,2,0,0,5,5, %T A097106 5,5,0,4,4,4,0,2,0,4,4,4,0,2,0,4,4,4,0,6,6,6,6,6,0,2,0,3,3,0,3,3,0,4, %U A097106 4,4,0,2,0,6,6,6,6,6,0,2,0,2,0,6,6,6,6,6,0,8,8,8,8,8,8,8,0,4,4,4,0,2,0,4,4 %N A097106 a(n) = (Smallest prime power >= n) - (greatest prime power <= n). %H A097106 Antti Karttunen, <a href="/A097106/b097106.txt">Table of n, a(n) for n = 1..65537</a> %F A097106 a(n) = A000015(n) - A031218(n); %F A097106 a(n) = 0 iff n is a power of a prime (in A000961). %t A097106 sp[n_] := If[n == 1, 1, Module[{m = n}, While[!PrimePowerQ[m], m++]; m]]; %t A097106 gp[n_] := If[n == 1, 1, Module[{m = n}, While[!PrimePowerQ[m], m--]; m]]; %t A097106 a[n_] := sp[n] - gp[n]; %t A097106 Array[a, 100] (* _Jean-François Alcover_, Dec 02 2021 *) %o A097106 (PARI) %o A097106 A000015(n) = if(1==n, n, while(!isprimepower(n), n++); n); %o A097106 A031218(n) = if(1==n, n, while(!isprimepower(n), n--); n); %o A097106 A097106(n) = (A000015(n) - A031218(n)); \\ _Antti Karttunen_, Sep 23 2018 %Y A097106 Cf. A000015, A031218, A000961, A072680. %K A097106 nonn,look %O A097106 1,6 %A A097106 _Reinhard Zumkeller_, Sep 15 2004