cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097109 G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

This page as a plain text file.
%I A097109 #27 Jan 22 2024 01:25:04
%S A097109 1,1,0,-2,-3,0,0,2,0,-2,0,0,6,2,0,0,-3,0,0,2,0,-4,0,0,0,1,0,-2,-6,0,0,
%T A097109 2,0,0,0,0,6,2,0,-4,0,0,0,2,0,0,0,0,6,3,0,0,-6,0,0,0,0,-4,0,0,0,2,0,
%U A097109 -4,-3,0,0,2,0,0,0,0,0,2,0,-2,-6,0,0,2,0,-2,0,0,12,0,0,0,0,0,0,4,0,-4,0,0,0,2,0,0,-3,0,0,2,0
%N A097109 G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.
%C A097109 Coefficients are multiplicative [Fine].
%D A097109 Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.36).
%H A097109 G. C. Greubel, <a href="/A097109/b097109.txt">Table of n, a(n) for n = 0..1000</a>
%F A097109 Fine gives an explicit formula for a(n) in terms of the divisors of n.
%F A097109 From _Michael Somos_, Sep 15 2006: (Start)
%F A097109 Expansion of (a(q) - 3*a(q^3) - 4*a(q^4) + 12*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
%F A097109 Euler transform of period 6 sequence [ 1, -1, -2, -1, 1, -2, ...].
%F A097109 a(n) is multiplicative with a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). (End)
%F A097109 a(3*n + 2) = 0. a(3*n) = A115978(n). a(3*n + 1) = A122861(n).
%F A097109 Sum_{k=0..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - _Amiram Eldar_, Jan 22 2024
%t A097109 QP = QPochhammer; s = QP[q^2]^2*(QP[q^3]^3/(QP[q]*QP[q^6]^2)) + O[q]^100; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 25 2015, adapted from PARI *)
%o A097109 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^2), n))} /* _Michael Somos_, Sep 15 2006 */
%o A097109 (PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if(p==2, 3*(e%2-1), if( p==3, -2, if( p%6==1, e+1, 1-e%2))))))} /* _Michael Somos_, Sep 15 2006 */
%Y A097109 Cf. A010815, A115978, A122861, A248897.
%K A097109 sign,mult
%O A097109 0,4
%A A097109 _N. J. A. Sloane_, Sep 16 2004