A097125 Number of noncongruent integer-sided tetrahedra with largest side n.
1, 4, 16, 45, 116, 254, 516, 956, 1669, 2760, 4379, 6676, 9888, 14219, 19956, 27421, 37062, 49143, 64272, 82888, 105629, 133132, 166090, 205223, 251624, 305861, 369247, 442695, 527417, 624483, 735777, 861885, 1005214, 1166797, 1348609
Offset: 1
Keywords
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..1000 [Extracted from the Kurz link]
- James East, Michael Hendriksen, and Laurence Park, On the enumeration of integer tetrahedra, arXiv:2112.00899 [math.CO], 2021.
- Sascha Kurz, Enumeration of integral tetrahedra, J. Integer Seqs., 10 (2007), # 07.9.3.
- Sascha Kurz, Enumeration of integral tetrahedra, arXiv:0804.1310 [math.CO], 2008.
- Sascha Kurz, Number of integral tetrahedra with given diameter, 2007.
Programs
-
Mathematica
cmd3[d01_, d02_, d03_, d12_, d13_, d23s_] := Det[{{0, d01^2, d02^2, d03^2, 1}, {d01^2, 0, d12^2, d13^2, 1}, {d02^2, d12^2, 0, d23s, 1}, {d03^2, d13^2, d23s, 0, 1}, {1, 1, 1, 1, 0}}]; cmd30s = Sqrt /@ Solve[cmd3[d01, d02, d03, d12, d13, d23s] == 0, d23s][[;;,1,2]]; edgePermutations = PermutationList[#, 6] & /@ GroupElements@PermutationGroup[{Cycles[{{2, 4}, {3, 5}}], Cycles[{{1, 2}, {5, 6}}], Cycles[{{2, 3}, {4, 5}}]}]; canonical[dd_] := AllTrue[edgePermutations, OrderedQ[{dd[[#]], dd}] &]; a[d_] := Module[{s = 0, dd, uu}, Do[With[{roots = (cmd30s /. {d01 -> d})}, dd = Min[Floor /@ roots + 1]; uu = Min[Max[Ceiling /@ roots - 1], d]; Do[If[canonical[{d, d02, d03, d12, d13, d23}], s += 1], {d23, dd, uu}]], {d02, Quotient[d, 2] + 1, d}, {d12, d + 1 - d02, d02}, {d03, d + 1 - d02, d02}, {d13, d + 1 - d03, d02}]; s]; Array[a, 10] (* Andrey Zabolotskiy, Apr 04 2024, after Kurz's Algorithm 1 *)