cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097125 Number of noncongruent integer-sided tetrahedra with largest side n.

Original entry on oeis.org

1, 4, 16, 45, 116, 254, 516, 956, 1669, 2760, 4379, 6676, 9888, 14219, 19956, 27421, 37062, 49143, 64272, 82888, 105629, 133132, 166090, 205223, 251624, 305861, 369247, 442695, 527417, 624483, 735777, 861885, 1005214, 1166797, 1348609
Offset: 1

Views

Author

Sascha Kurz, Jul 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    cmd3[d01_, d02_, d03_, d12_, d13_, d23s_] := Det[{{0, d01^2, d02^2, d03^2, 1}, {d01^2, 0, d12^2, d13^2, 1}, {d02^2, d12^2, 0, d23s, 1}, {d03^2, d13^2, d23s, 0, 1}, {1, 1, 1, 1, 0}}];
    cmd30s = Sqrt /@ Solve[cmd3[d01, d02, d03, d12, d13, d23s] == 0, d23s][[;;,1,2]];
    edgePermutations = PermutationList[#, 6] & /@ GroupElements@PermutationGroup[{Cycles[{{2, 4}, {3, 5}}], Cycles[{{1, 2}, {5, 6}}], Cycles[{{2, 3}, {4, 5}}]}];
    canonical[dd_] := AllTrue[edgePermutations, OrderedQ[{dd[[#]], dd}] &];
    a[d_] := Module[{s = 0, dd, uu}, Do[With[{roots = (cmd30s /. {d01 -> d})},
       dd = Min[Floor /@ roots + 1]; uu = Min[Max[Ceiling /@ roots - 1], d];
       Do[If[canonical[{d, d02, d03, d12, d13, d23}], s += 1], {d23, dd, uu}]],
      {d02, Quotient[d, 2] + 1, d}, {d12, d + 1 - d02, d02}, {d03, d + 1 - d02, d02}, {d13, d + 1 - d03, d02}]; s];
    Array[a, 10] (* Andrey Zabolotskiy, Apr 04 2024, after Kurz's Algorithm 1 *)