cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097130 Carmichael numbers that are not == 1 mod 24.

This page as a plain text file.
%I A097130 #20 Aug 21 2017 17:30:34
%S A097130 561,2465,2821,8911,29341,62745,63973,101101,162401,188461,314821,
%T A097130 512461,656601,1024651,1033669,1152271,1193221,1909001,2100901,
%U A097130 2508013,2531845,3146221,5031181,5444489,5481451,6733693,6868261,8719309,8927101,9494101
%N A097130 Carmichael numbers that are not == 1 mod 24.
%H A097130 Charles R Greathouse IV, <a href="/A097130/b097130.txt">Table of n, a(n) for n = 1..236823</a>
%H A097130 Gorgui-Naguib and Dlay, <a href="http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/267.PDF">Properties of the Euler totient function modulo 24 and some of its cryptographic implications</a>, Cryptology Research Group, University of Newcastle-upon-Tyne, UK.
%H A097130 Andrew Granville and Carl Pomerance, <a href="http://dx.doi.org/10.1090/S0025-5718-01-01355-2">Two contradictory conjectures concerning Carmichael numbers</a>, Math. Comp. 71 (2002), pp. 883-90.
%H A097130 F. Richman, <a href="http://math.fau.edu/Richman/carm.htm">Primality testing with Fermat's little theorem </a>
%e A097130 561 is 9 modulo 24, 1105 is 1 modulo 24, 1729 is 1 modulo 24, etc.
%t A097130 CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 10000000, Mod[#, 24] > 1 && CarmichaelNbrQ@# &] (* _Robert G. Wilson v_, Aug 23 2012 *)
%Y A097130 Cf. A002997, A097061.
%K A097130 nonn
%O A097130 1,1
%A A097130 Rob Hoogers (chimera(AT)chimera.fol.nl), Jul 26 2004
%E A097130 Recomputed and edited by _N. J. A. Sloane_, Aug 02 2010