cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097139 Convolution of 5^n and floor(n/2).

This page as a plain text file.
%I A097139 #39 May 09 2024 09:08:06
%S A097139 0,0,1,6,32,162,813,4068,20344,101724,508625,2543130,12715656,
%T A097139 63578286,317891437,1589457192,7947285968,39736429848,198682149249,
%U A097139 993410746254,4967053731280,24835268656410,124176343282061,620881716410316
%N A097139 Convolution of 5^n and floor(n/2).
%C A097139 a(n+1) gives partial sums of A033115 and second partial sums of A015531.
%C A097139 Partial sums of (1/4)*floor(5^n/6) = (1/3)*floor(5^n/8). - _Mircea Merca_, Dec 27 2010
%H A097139 Vincenzo Librandi, <a href="/A097139/b097139.txt">Table of n, a(n) for n = 0..1000</a>
%H A097139 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-4,-6,5).
%F A097139 a(n) = 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24. - _R. J. Mathar_, Jan 08 2011
%F A097139 G.f.: x^2/((1-x)*(1-5*x)*(1-x^2)).
%F A097139 a(n) = 6*a(n-1) - 4*a(n-2) - 6*a(n-3) + 5*a(n-4).
%F A097139 a(n) = Sum_{k=0..n} floor((n-k)/2)*4^k = Sum_{k=0..n} floor(k/2)*4^(n-k).
%F A097139 From _Mircea Merca_, Dec 27 2010: (Start)
%F A097139 4*a(n) = round((5*5^n-12*n-9)/24) = floor((5*5^n-12*n-5)/24) = ceiling((5*5^n-12*n-13)/24) = round((5*5^n-12*n-5)/24).
%F A097139 a(n) = a(n-2) + (5^(n-1)-1)/4, n>1. (End)
%F A097139 a(n) = (floor(5^(n+1)/24) - floor((n+1)/2))/4. - _Seiichi Manyama_, Dec 22 2023
%p A097139 A097139 := proc(n) 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24 ; end proc: # _R. J. Mathar_, Jan 08 2011
%t A097139 f[n_] := Floor[5^n/6]/4; Accumulate@ Array[f, 24, 0]
%t A097139 a[n_] := a[n] = 6 a[n - 1] - 4 a[n - 2] - 6 a[n - 3] + 5 a[n - 4]; a[0] = a[1] = 0; a[2] = 1; a[3] = 6; Array[a, 24, 0]
%t A097139 CoefficientList[ Series[x^2/((1 - x) (1 - 5 x) (1 - x^2)), {x, 0, 23}], x] (* _Robert G. Wilson v_, Jan 02 2011 *)
%t A097139 LinearRecurrence[{6,-4,-6,5},{0,0,1,6},30] (* _Harvey P. Dale_, Mar 16 2019 *)
%o A097139 (Magma) [5^(n+1)/96 -n/8 -3/32 +(-1)^n/24: n in [0..30]]; // _Vincenzo Librandi_, Jun 25 2011
%Y A097139 Column k=5 of A368296.
%K A097139 easy,nonn
%O A097139 0,4
%A A097139 _Paul Barry_, Jul 29 2004