A097151 Digits of balanced base-10 representations of nonnegative integers (least significant digits first).
0, 1, 2, 3, 4, -5, 1, -4, 1, -3, 1, -2, 1, -1, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, -5, 2, -4, 2, -3, 2, -2, 2, -1, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, -5, 3, -4, 3, -3, 3, -2, 3, -1, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, -5, 4, -4, 4, -3, 4, -2, 4, -1, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, -5, -5, 1, -4, -5, 1, -3, -5, 1, -2, -5, 1, -1, -5, 1, 0, -5, 1, 1, -5, 1, 2, -5, 1, 3, -5, 1
Offset: 1
Examples
As the only digits permissible are in {-5,-4,-3,-2,-1,0,1,2,3,4}, 5 = -5 + 1*10 is the first number requiring two of these digits: -5,1. A097150 is the same sequence but with the digits in reverse order. Also, 45 = -5 - 5*10 + 1*10^2 has digits -5,-5,1, 54 = 4 - 5*10 + 1*10^2 has digits 4,-5,1 and 55 = -5 - 4*10 + 1*10^2 has digits -5,-4,1.
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 408.
Crossrefs
Cf. A097150 (most significant digits first).
Comments