This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097230 #27 Apr 25 2022 08:09:08 %S A097230 1,1,0,1,0,1,1,0,2,1,1,0,3,2,1,1,0,4,3,3,1,1,0,5,4,6,4,1,1,0,6,5,10,9, %T A097230 5,1,1,0,7,6,15,16,13,6,1,1,0,8,7,21,25,26,18,7,1,1,0,9,8,28,36,45,40, %U A097230 24,8,1,1,0,10,9,36,49,71,75,59,31,9,1,1,0,11,10,45,64,105,126,120,84,39,10,1 %N A097230 Triangle read by rows: number of binary sequences with no isolated 1's. %C A097230 T(n,k) = number of 0-1 sequences of length n with exactly k 1's, none of which is isolated. %H A097230 Alois P. Heinz, <a href="/A097230/b097230.txt">Rows n = 0..140, flattened</a> %F A097230 G.f.: (1-x*y+x^2*y^2)/( (1-x)*(1-x*y) -x^3*y^2 ) = Sum_{n>=0, k>=0} T(n,k) x^n y^k. %F A097230 From _Alois P. Heinz_, Mar 03 2020: (Start) %F A097230 Sum_{k=1..n} k * T(n,k) = A259966(n). %F A097230 Sum_{k=1..n} k^2 * T(n,k) = A332863(n). (End) %e A097230 T(6,4) = 6 counts 001111, 011011, 011110, 110011, 110110, 111100. %e A097230 Table begins: %e A097230 \ k 0, 1, 2, %e A097230 n %e A097230 0 | 1; %e A097230 1 | 1, 0; %e A097230 2 | 1, 0, 1; %e A097230 3 | 1, 0, 2, 1; %e A097230 4 | 1, 0, 3, 2, 1; %e A097230 5 | 1, 0, 4, 3, 3, 1; %e A097230 6 | 1, 0, 5, 4, 6, 4, 1; %e A097230 7 | 1, 0, 6, 5, 10, 9, 5, 1; %e A097230 8 | 1, 0, 7, 6, 15, 16, 13, 6, 1; %e A097230 ... %p A097230 b:= proc(n, w, s) option remember; `if`(n=0, %p A097230 `if`(s in [1, 21], 0, x^w), `if`(s in [1, 21], 0, %p A097230 b(n-1, w, irem(s, 10)*10))+b(n-1, w+1, irem(s, 10)*10+1)) %p A097230 end: %p A097230 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0, 22)): %p A097230 seq(T(n), n=0..14); # _Alois P. Heinz_, Mar 03 2020 %t A097230 a[n_, 0]/;n>=0 := 1; a[n_, k_]/;k>n || k<0 :=0; a[n_, 1]:=0; a[2, 2]=1; a[n_, k_]/;n>=3 && 2 <= k <= n := a[n, k] = 1 + Sum[a[n-(r+1), k-j], {r, 2, n-1}, {j, Max[2, r-1-(n-k)], Min[r, k]}] (* This recurrence counts a(n, k) by r = location of first 1 followed by a 0, j = length of run which this first 1 terminates. *) %Y A097230 Row sums give A005251(n+2). %Y A097230 Cf. A180177 (same sequence with rows reversed). %Y A097230 Cf. A259966, A332863. %K A097230 nonn,tabl %O A097230 0,9 %A A097230 _David Callan_, Aug 01 2004